首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2001,279(2-3):204-208
Composition change during the melting process of some glasses in the PbBr2–PbCl2–PbF2–PbO–P2O5 system melted at 450–470°C for 15 min was studied. Results show that there was a remarkable difference between the batch composition and the analyzed composition. Large amount of P, Br, Pb, and Cl were lost mainly in the form of PbBr2, PbCl2 and P2O5. The content of O is influenced by two factors. The incomplete decomposition of NH4H2PO4 or the reaction between P2O5 and H2O in the atmosphere increases the content of O, while the volatilization of P2O5 decreases the content of O.  相似文献   

2.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching.  相似文献   

3.
The thermodynamic properties of the Al–Ga–N2 system under high N2 pressure up to 10 kbar and 1800 °C are investigated. On the basis of the experimental p–T growth conditions for (Al,Ga)N crystals, the standard Gibbs free energy as well as the standard enthalpy and entropy of formation of the AlxGa1−xN crystals as a function of composition x were calculated. The aN2–T and x–T phase diagrams for (Al,Ga)N are presented.  相似文献   

4.
This work describes the preparation of HfO2 thin films by the sol–gel method, starting with different precursors such as hafnium ethoxide, hafnium 2,4-pentadionate and hafnium chloride. From the solution prepared as mentioned above, thin films on silicon wafer substrates have been realized by ‘dip-coating’ with a pulling out speed of 5 cm min?1. The films densification was achieved by thermal treatment for 10 min at 100 °C and 30 min at 450 °C or 600 °C, with a heating rate of 1 °C min?1. The structural and optical properties of the films are determined employing spectroellipsometric (SE) measurements in the visible range (0.4–0.7 μm), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The main objective of this paper was to establish a correlation between the method of preparation (precursor, annealing temperature) and the properties of the obtained films. The samples prepared from pentadionate and ethoxide precursors are homogenous and uniform in thickness. The samples prepared starting from chloride precursor are thicker and proved to be less uniform in thickness. Higher non-uniformity develops in multi-deposition films or in crystallized films. A nano-porosity is present in the quasi-amorphous films as well in the crystallized one. For the samples deposited on silicon wafer, the thermal treatment induced the formation of a SiO2 layer at the coating–substrate interface.  相似文献   

5.
The glasses in the MnNbOF5–BaF2–5BiF3–ErF3 system were obtained and their thermal and optical properties were studied. The specialties of crystallization depending on system composition are showed. The glass structure is discussed based on results of the IR and Raman spectra study. During the studies of inelastic light scattering, there revealed a strong photoluminescence, produced by erbium emission, whose intensity depends not only on the erbium trifluoride content in glass, but also on the glass network structure.  相似文献   

6.
Crystallography Reports - Pb0.67Cd0.33F2 solid solution with a fluorite-type structure has been synthesized for the first time using high-energy grinding of the initial components, PbF2 and CdF2,...  相似文献   

7.
A new series of chalcohalide glasses in the GeS2–In2S3–CsI pseudo-ternary system were prepared by conventional melt-quenching method. The glass-forming region was determined and it is mainly situated in the GeS2-rich domain. The glasses have relatively high glass transition temperatures (Tg ranges from 335 to 405 °C) and good thermal stabilities. Based on the Raman spectra, it can be speculated that the glassy net is mainly constituted by [GeS4] and [InS4?xIx] tetrahedra, which are interconnected by the bridging sulfur atoms. And the ethane-liked structural units [S3Ge–GeS3] can be formed because of the lacking of sulfur. Cs+ ion, which was added from CsI, exists as the nearest neighbor of I? ion.  相似文献   

8.
In the present work, thermal properties of GeSe2–As2Se3–CdSe glasses were investigated via DSC measurements. The dependences of glass transition temperature and thermal stability on glass composition were discussed. XRD measurement was also performed to validate the effect of cadmium on the thermal properties of glasses. The calculated Avrami exponent was used to demonstrate the three-dimensional growth of crystals in the glass matrices. The crystallization kinetics for the glasses was studied by using the modified Kissinger and Ozawa equations.  相似文献   

9.
A glass with the composition of 35Na2O–24Fe2O3–20B2O3–20SiO2–1ZnO (mol%) was melted, quenched, using a twin roller technique, and subsequently heat treated in the range 485–750 °C for 1–2 h. This led to the crystallization of magnetite as the sole or the major crystalline phase.Heat treatment at lower temperatures resulted in the crystallization of magnetite crystals 7–20 nm in diameter, whereas heat treatment at higher temperatures produced higher quantities of magnetite and much larger crystals. The room temperature magnetization and coercive force values were in the range of 6–57 emu g? 1 and 0–120 Oe, respectively for the heat treated glasses.  相似文献   

10.
Glass ceramic materials with composition 75TeO2–xBi2O3–(25-x)ZnO (x = 13, 12, 11) possessing transparency in the near- and mid-infrared (MIR) regions were studied in this paper. It was found that as the Bi2O3 content increased in the glass composition, the observed crystallization tendency is enhanced, and high crystal concentrations were obtained for the glasses with high Bi2O3 content while maintaining transparency in the MIR region. Crystal size in the glass ceramic was reduced by adjusting the heat treatment conditions; the smallest average size obtained in this study is 700 nm. Bi0.864Te0.136O1.568 was identified using X-ray Diffraction (XRD) and found to be the only crystal phase developed in the glass ceramics when the treatment temperature was fixed at 335 °C. The morphology of the crystals was studied using Scanning Electron Microscopy (SEM), and crystals were found to be polyhedral structures with uniform sizes and a narrow size distribution for a fixed heat treatment regime. Infrared absorption spectra of the resulting glass ceramics were studied. The glass ceramic retained transparency in the infrared region when the crystals inside were smaller than 1 μm, with an absorption coefficient less than 0.5/cm in the infrared region from 1.25 to 2.5 μm. The mechanical properties were also improved after crystallization; the Vickers Hardness value of the glass ceramic increased by 10% relative to the base glass.  相似文献   

11.
The local order around ion-implanted Er3+ ions in SiO2–TiO2–HfO2 thin films prepared by sol–gel, was studied by extended X-ray absorption fine structure at the Er-LIII edge. Both the first and second coordination shells of Er3+ were analyzed for different heat-treatments. While the first coordination shell always consisted of ~6–7 oxygen atoms at distances varying between 2.23 and 2.27 Å, the structure of the second shell was found to vary with the film composition and heat-treatment. Namely, whereas Si was found to be the only second neighbor of erbium in binary SiO2–TiO2 films, the addition of HfO2 caused a preferential replacement of Si by Hf. The post-implantation thermal treatments also played a fundamental role in determining the final environment of the erbium ions.  相似文献   

12.
The structure of glasses within the system Li2O–Al2O3–B2O3–P2O5 has been studied through 31P, 11B and 27Al Nuclear Magnetic Resonance, and the effect of Al2O3 substitution by B2O3 and P2O5 network formers on the structure and properties investigated for a constant Li2O content. Multinuclear NMR results reveal that substitution of Al2O3 for B2O3 and P2O5 network formers in a glass with composition 50Li2O·15B2O3·35P2O5 produces a change in boron environment from four-fold to three-fold coordination. Meanwhile aluminum can be present in four-, five- and six-fold coordinations a higher amount of Al(IV) groups is found for increasing alumina contents. The behavior of the glass transition temperature and electrical conductivity of the glasses has been interpreted as a function of the structural changes induced in the glass network when alumina is substituted for B2O3, P2O5 or both. Small additions of alumina produce a drastic increase in glass transition temperature, while it does not change for [Al2O3] greater than 3 mol.%. However, the electrical conductivity shows very different behavior depending on the type of substitution; it can remain constant when B2O3 content decreases or sharply decrease when P2O5 is substituted by Al2O3, which is attributed to a higher amount of BO3 and phase separation.  相似文献   

13.
The effect of rare-earth elements on the plasma etching behavior of oxide glasses were investigated to develop the window glass for a plasma processing chamber in the semiconductor industry. Aluminosilicate glasses with various rare-earth elements (Y, Gd and La) were prepared and their optical transmittance and plasma etching depth were evaluated. The plasma etching behavior of the glasses was estimated by X-ray photoelectron spectroscopy analysis at the fluorine plasma exposure surface of the glasses. The rare-earth element in the glass was highly related to various properties such as density, molar volume, mechanical properties and plasma etching depth. The cationic field strength of the rare-earth element more strongly affected the plasma etching depth of the glasses than the sublimation point of the fluorine compounds and this may be related to the plasma etching condition.  相似文献   

14.
In searching for new kind of photoelectric material, chalcogenide glasses in the GeS2–Sb2S3–CdS system have been studied and their glass-forming region was determined. The system has a relatively large glass-forming region that is mainly situated along the GeS2–Sb2S3 binary side. Thermal, optical and mechanical properties of the glasses were reported and the effects of compositional change on their properties are discussed. These novel chalcogenide glasses have relatively high glass transition temperatures (Tg ranges from 566 to 583 K), good thermal stabilities (the maximum of deference between the onset crystallization temperature, Tc, and Tg is 105 K), broad transmission region (0.57–12 μm) and large densities (d ranges from 2.99 to 3.34 g cm?3). These glasses would be expected to be used in the field of rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

15.
A molecular dynamics simulation method was used to study the effects of the microstructure on the solidification process of different cooling rates in the MgO–Al2O3–SiO2 glass–ceramics with cordierite as the main crystalline phase. The reasons for changes in the microstructure during the solidification process were analysed by the radial distribution function curve, the bond angular distribution, the coordination number and the volume changes. The results showed that the cooling rate greatly affected the crystallisation process and the glass transition process. When the cooling rate was too fast, the atoms could not undergo a massive displacement before they were “frozen”, and the ability of atoms to achieve an equilibrium position was limited. Some amorphous phases were formed as a result of the disorder of the atomic arrangement, then some crystalline phase precipitated from the vitreous, and a glass–ceramic material was eventually formed.  相似文献   

16.
Crystallography Reports - The electron diffraction investigation of two-component phases in the systems MF2–RF3 (CaF2–ErF3, SrF2–LaF3) and components of the systems CaF2, SrF2,...  相似文献   

17.
The effect of Yb3+ concentration on the frequency upconversion (UPC) of Er3+ in PbO–GeO2–Ga2O3 glasses is reported for the first time. Samples were prepared with 0.5 wt% of Er2O3 and different concentrations of Yb2O3 (1.0–5.0 wt%). The green (523 and 545 nm) and red (657 nm) emissions are observed under 980 nm diode laser excitation. The dependence of the frequency UPC emission intensity upon the excitation power was examined and the UPC mechanisms are discussed. An interesting characteristic of these glasses is the increase of the ratio of red to green emission, through an increase of the Yb3+ concentration due to an efficient energy transfer from Yb3+ to Er3+.  相似文献   

18.
Regularities of phase transformations in glasses of the Li2O–Al2O3–SiO2–TiO2 system doped with up to 2.5 mol% of alkali- and divalent metal oxides were studied by X-ray diffraction analysis, Raman scattering and optical spectroscopy. Ni(II) ions were used as spectral probes of phase transformations because Ni(II)-ions enter the inhomogeneous regions formed during the phase separation and crystallization, and their absorption spectra change with heat-treatment temperature reflecting formation of aluminotitanate amorphous regions, spinel nanosized crystals and β-quartz solid solutions, consequently.It was demonstrated that the technological additives do not change the sequence of the phases' formation but accelerate the liquid phase separation and crystallization. Addition of MgO and ZnO leads to increasing the temperature range of spinel precipitation. Addition of CaO, BaO and PbO results in increasing the light scattering of prepared glass-ceramics.In selection of the technological additives for decreasing the melting temperature of glass-ceramics for optical and photonic applications the influence of the additives on the structure and optical properties of the prepared material should be considered.  相似文献   

19.
Crystallography Reports - A series of three-component isostructural fluorite crystals (Sr1–xBax)0.7La0.3F2.3 (sp. gr. $$Fm{\bar {3}}m$$ , 0 ≤ x ≤ 1), the compositions of...  相似文献   

20.
Glass–ceramics with the composition 2Fe2O3.1ZnO.1MgO.96SiO2 [4ZnMgFe] and 2Fe2O3.2ZnO.3MgO.93SiO2 [7ZnMgFe] (mol%) were prepared using the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron diffraction (ED) and Mössbauer spectroscopy (MS) were used to investigate the glass–ceramics structure. The samples contain ferrite nanoparticles embedded in a glass matrix. However, zinc ferrite nanoparticles seems to be the preferential crystalline phase formed. The amount of ferrite particles depends on treatment temperature and sample composition. The Mössbauer spectroscopy measurements show that ferrite nanoparticles can exhibit a ferrimagnetic behaviour combined with superparamagnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号