首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the surface‐enhanced Raman scattering (SERS) effect from the apex of single‐crystalline Ag nanowires (NWs). We also fabricated tip‐enhanced Raman spectroscopy (TERS) tips by attaching individual Ag NWs to W wires by using the alternating current dielectrophoresis (AC‐DEP) method. The single‐crystalline Ag NW tips could overcome many of the shortcomings of conventional TERS tips. Most importantly, the results obtained from TERS using single‐crystalline metal NWs are very reproducible, and the tips are also reusable. This development represents a significant progress in making TERS a reliable optical characterization technique with nanometer spatial resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Tip-enhanced Raman spectroscopy (TERS) is based on the optical excitation of localized surface plasmons in the tip-substrate cavity, which provides a large but local field enhancement near the tip apex. We report on TERS with smooth single crystalline surfaces as substrates. The adsorbates were CN- ions at Au(111) and malachite green isothiocyanate (MGITC) molecules at Au(111) and Pt(110) using either Au or Ir tips. The data analysis yields Raman enhancements of about 4 x 10(5) for CN- and up to 10(6) for MGITC at Au(111) with a Au tip, probing an area of less than 100 nm radius.  相似文献   

3.
Since its first experimental realization, tip‐enhanced Raman spectroscopy (TERS) has emerged as a potentially powerful nanochemical analysis tool. However, questions about the comparability and reproducibility of TERS data have emerged. This interlaboratory comparison study addresses these issues by bringing together different TERS groups to perform TERS measurements on nominally identical samples. Based on the spectra obtained, the absolute and relative peak positions, number of bands, peak intensity ratios, and comparability to reference Raman and surface‐enhanced Raman spectroscopy (SERS) data are discussed. Our general findings are that all research groups obtained similar spectral patterns, irrespective of the setup or tip that was used. The TERS (and SERS) spectra consistently showed fewer bands than the conventional Raman spectrum. When comparing these three methods, the spectral pattern match and substance identification is readily possible. Absolute and relative peak positions of the three major signals of thiophenol scattered by 19 and 9 cm−1, respectively, which can probably be attributed to different spectrometer calibrations. However, within the same group (but between different tips), the signals only scattered by 3 cm−1 on average. This study demonstrated the suitability of TERS as an analytical tool and brings TERS a big step forward to becoming a routine technique. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
We show that the origin of the spectral fluctuations frequently observed in tip enhanced Raman spectroscopy (TERS) experiments can be mainly related to the presence of surface-contaminating amorphous carbon-based species. We have monitored the spectral fluctuations originating from the sharp metallic tips used as apertureless near field probes, as well as from commonly used noble metal substrates. A correlation between the tip surface roughness and the carbon-based spectral fluctuations has been revealed. An Au-(1 1 1) bare substrate has been mapped with sub-wavelength resolution by TERS, evidencing the localization of the carbon contaminants on the surface steps and grain boundaries.  相似文献   

5.
Andrzej Kudelski 《Surface science》2009,603(10-12):1328-1334
Raman scattering has usually a very low efficiency. Therefore, during the first five decades after its discovery, Raman spectroscopic investigations of adsorbate-covered surfaces (except surfaces of highly porous samples) were out of reach. This changed in 1970s, when for molecules adsorbed on some surfaces, very large increase of the intensity of Raman spectrum (denoted as surface-enhanced Raman spectroscopy – SERS) was reported. In the past decade, two other very important achievements in surface Raman spectroscopy have been made: observation of SER spectrum of a single molecule and coupling of Raman spectroscope with the scanning probe microscope (STM or AFM) allowing a significant increase in the spatial resolution of Raman measurements in so-called tip-enhanced Raman spectroscopy (TERS). In the latter approach, fine tip made of a metal that supports surface plasmon resonances (such tip may be treated as a very local electromagnetic resonator) is brought at the nanometer distance above the surface, which induces large increase of the Raman scattering from molecules adsorbed at a surface located underneath the tip. This short review presents an overview of the state of the art and further possible applications of Raman spectroscopy in surface analysis. We mainly focus on SERS and TERS. Future prospects in these fields are also discussed.  相似文献   

6.
The spatial resolution in optical imaging is restricted by so‐called diffraction limit, which prevents it to be better than about half of the wavelength of the probing light. Tip‐enhanced Raman spectroscopy (TERS), which is based on the SPP‐induced plasmonic enhancement and confinement of light near a metallic nanostructure, can however, overcome this barrier and produce optical images far beyond the diffraction limit. Here in this article, the basic phenomenon involved in TERS is reviewed, and the high spatial resolution achieved in optical imaging through this technique is discussed. Further, it is shown that when TERS is combined with some other physical phenomena, the spatial resolution can be dramatically improved. Particularly, by including tip‐applied extremely localized pressure in TERS process, it has been demonstrated that a spatial resolution as high as 4 nm could be achieved.  相似文献   

7.
Tip‐enhanced Raman scattering (TERS) spectroscopy is a promising technique for nanoscale chemical analysis. However, there are several challenges preventing widespread application of this technology, including reproducible fabrication of efficient TERS probes. These problems reflect a lack of clear understanding of the origins of, and the parameters influencing TERS. It is believed that the coating characteristics at the apex of the tip have a major effect on the near‐field optical enhancement and thus the TERS activity of a metalized probe. Here we show that the aspect ratio of the tip can play a significant role in the efficiency of TERS probes. We argue that the electrostatic field arising from the lightning‐rod effect has a substantial role in the observed TERS effect. This argument is supported by ‘edge‐enhanced Raman scattering’ which is shown for a noble metal film. Furthermore, it is reported that an associated tip‐surface‐enhanced Raman scattering effect can be achieved by using a TERS‐inactive metalized probe on a surface‐enhanced Raman spectroscopy‐inactive roughened surface. This observation can be explained by an interparticle enhancement of the electromagnetic field. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Although conventional Raman, surface‐enhanced Raman (SERS) and tip‐enhanced Raman spectroscopy (TERS) have been known for a long time, a direct, thorough comparison of these three methods has never been carried out. In this paper, spectra that were obtained by conventional Raman, SERS (on gold and silver substrates) and TERS (in ‘gap mode’ with silver tips and gold substrates) are compared to learn from their differences and similarities. Because the investigation of biological samples by TERS has recently become a hot topic, this work focuses on biologically relevant substances. Starting from the TER spectra of bovine serum albumin as an example for a protein, the dipeptides Phe–Phe and Tyr–Tyr and the tripeptide Tyr–Tyr–Tyr were investigated. The major findings were as follows. (1) We show that the widely used assumption that spectral bands do not shift when comparing SER, TER and conventional Raman spectra (except due to binding to the metal surface in SERS or TERS) is valid. However, band intensity ratios can differ significantly between these three methods. (2) Marker bands can be assigned, which should allow one to identify and localize proteins in complex biological environments in future investigations. From our results, general guidelines for the interpretation of TER spectra are proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
For the first time, tip enhanced Raman spectroscopy (TERS) blinking measurements are used to identify the individual isotopes of non‐Raman resonant polystyrene in a miscible, binary blend. This demonstrates the sensitivity and selectivity required for nanoscale chemical imaging and broadens the types of surface components potentially identifiable with TERS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Tip-enhanced Raman spectroscopy (TERS) is high-sensitivity and high spatial-resolution optical analytical technique with nanoscale resolution beyond the diffraction limit. It is also one of the most recent advances in nanoscale chemical analysis. This review provides an overview of the state-of-art inTERS, in-depth information about the different available types of instruments including their (dis)advantages and capabilities. Finally, an overview about recent development in High-Vacuum TERS is given and some challenges are raised.  相似文献   

11.
张超  陈宝琴  李志远 《中国物理 B》2016,25(9):95203-095203
In 2013,a breakthrough experiment pushed the Raman mapping of molecules via the tip-enhanced Raman scattering(TERS) technique to a sub-nanometer spatial resolution,going into the single-molecule level.This surprising result was well explained by accounting for the critical role of elastic molecule Rayleigh scattering within a plasmonic nanogap in enhancing both the localization and the intensity level of the Raman scattering signal.In this paper,we theoretically explore the influence of various geometric factors of the TERS system on the spatial resolution of Raman mapping,such as the tip curvature radius,tip conical angle,tip–substrate distance,and tip–molecule vertical distance.This investigation can help to find out the most critical geometric factor influencing the spatial resolution of TERS and march along in the right direction for further improving the performance of the TERS system.  相似文献   

12.
In this article, the electromagnetic (EM) field in gap‐mode tip‐enhanced Raman spectroscopy (TERS) is investigated theoretically and experimentally for a range of commonly used and unusual metal and nonmetal substrates. By approaching a metal tip to a substrate, both form a coupled system that confines the EM field created at the tip apex. The influence of the substrate onto the EM field enhancement is observed in a top‐illumination gap‐mode TERS setup for different metal substrates. These include Au, the most commonly used substrate, and also a wide range of rarely or previously unused TERS substrates (Cu, Ag, Al, Pd, Pt, Ni, Ti, Mo, W, stainless steel, Al2O3, SiO2). Self‐assembled monolayers of thiols and brilliant cresyl blue thin film samples are investigated experimentally on nine metal substrates, all showing considerable TERS enhancement. With finite difference time domain and finite element simulations used, the article provides a good estimate of the EM field enhancement for a wide range of substrates for users to estimate how well a substrate of choice will perform in a gap‐mode TERS experiment. The reduction in EM field strength |E2| compared with Au is less than an order of magnitude for many metals (Calculations: Cu 92%, Ag 81%, Ni 53%). This article experimentally shows that a wide variety of conductive substrates can be used, when one is willing to trade a fraction of the EM field enhancement. TERS was seen on all metal substrates including stainless steel, yet quantification was not always possible. These qualitative results were complemented with intensities from calculations. The wider variety of substrates will increase the applicability of TERS and evolve it one step further towards use in standard analytics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Understanding the role of defects in graphene is the key to tailoring the properties of graphene and promoting the development of graphene‐based devices. Defects can affect the electronic properties of a device while also offering a means by which to functionalize the local properties. Using tip‐enhanced Raman spectroscopy (TERS), heightened defect sensitivity was demonstrated on graphene edges, folds, and overlapping regions. Measurements confirm that TERS can provide simultaneous structural and spectral information on a localized scale, hence offering defect characterization on a scale that is not obtainable using conventional Raman spectroscopy. This study observed preferential enhancement of the D band signal on multilayered graphene and ultrathin graphite; in addition, other key defect signatures were also enhanced and detected. We present our findings in relation to theoretical predictions of graphene defect signatures and an analysis of the sensitivity of TERS in measuring two‐dimensional structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The development of fast identification techniques of viruses is an ongoing important research topic. Conventional virus detection and identification is generally based on various different microbiological methods. However, these techniques are not suitable for the analysis of single virus particles. Therefore, our goal is to establish tip‐enhanced Raman scattering (TERS), providing vibrational spectroscopic information with a spatial resolution less than 50 nm, to characterize single viruses at a molecular level. Here we report, to the best of our knowledge for the first time, about TERS spectra of a tobacco mosaic virus, showing the great capability of this technique. However, the application of the TERS technique for a rapid and direct detection of different species of single viruses is under development, which is useful for a wide range of analytical fields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We describe an apertureless near-field Raman spectroscopy setup that has successfully produced substantial enhancements for a wide variety of samples and achieved a high contrast. The tremendous potential of tip-enhanced Raman spectroscopy (TERS) for nanoscale chemical characterization has been demonstrated by various groups by measuring organic dyes, biological molecules, single-walled carbon nanotubes and silicon. Keys to rapid advances in the application of TERS to pressing scientific problems include the optimization of the method to achieve greater reproducibility and greater enhancement factors if possible, but more importantly, greater imaging contrast. Using a side-illumination geometry, we demonstrate reproducible enhancements of the Raman signal per volume on the order of 103–104 using silver- and gold-coated tips on various molecular, polymeric and semiconducting materials as well as on carbon nanotubes. We have experimentally verified localization of the enhancement to a depth of ∼20 nm. Most importantly, optimization of the polarization geometry makes possible a contrast between the near-field and far-field signals of 900% in the case of silicon—a level that makes the technique attractive for various applications. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Raman forbidden modes and surface defect‐related Raman features in SnO2 nanostructures carry information about disorder and surface defects which strongly influence important technological applications like catalysis and sensing. Because of the weak intensities of these peaks, it is difficult to identify these features by using conventional Raman spectroscopy. Tip enhanced Raman spectroscopy (TERS) studies conducted on SnO2 nanoparticles (NPs) of size 4 and 25 nm have offered significant insights of prevalent defects and disorders. Along with one order enhancement in symmetry allowed Raman modes, new peaks related to disorder and surface defects of SnO2 NPs were found with significant intensity. Temperature‐dependent Raman studies were also carried out for these NPs and correlated with the TERS spectra. For quasi‐quantum dot sized 4‐nm NPs, the TERS study was found to be the best technique to probe the finite size‐related Raman forbidden modes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A review is given on single-molecule surface- and tip-enhanced Raman spectroscopy (SERS and TERS). It sketches the historical development along different routes toward huge near-field enhancements, the basis of single-molecule enhanced Raman spectroscopy; from SNOM to apertureless SNOM to tip-enhanced Raman spectroscopy (TERS) and microscopy; from SERS to single-molecule SERS to single-molecule TERS. The claim of extremely high enhancement factors of 1014 in single-molecule SERS is critically discussed, in particular in the view of recent experimental and theoretical results that limits the electromagnetic enhancement to ? 1011. In the field of TERS only very few reports on single-molecule TERS exist: single-molecule TERS on dyes and on a protein (cytochrome c). In the latter case, TERS ‘sees’ even subunits of this protein, either amino-acids or the heme, depending on the orientation of the protein relative to the tip. The former case concerns the dye brilliant cresyl blue adsorbed either on a Au surface under ambient conditions or on a Au(111) surface in ultra high vacuum. These results indicate that significant progress is to be expected for TERS in general and for single-molecule TERS in particular.  相似文献   

18.
单壁碳纳米管束针尖增强近场拉曼光谱探测实验研究   总被引:2,自引:0,他引:2  
针尖增强近场拉曼光谱术是最近发展起来的光谱技术。金属探针在获得样品纳米局域表面形貌的同时,受激光激发,在针尖附近产生增强电磁场,得到与形貌位置精确对应的针尖增强局域拉曼光谱,形貌和光谱的结合实现了纳米局域的光谱指认。文章建立了一套针尖增强近场拉曼光谱测量装置,并用此装置对电弧法合成的单壁碳纳米管进行了近场拉曼光谱探测。测量了直径为100 nm单壁碳纳米管束的针尖增强拉曼光谱,进一步得到至多3根单壁碳纳米管的近场拉曼光谱,实现了超衍射分辨光谱探测。通过与远场拉曼光谱比较发现,针尖增强近场拉曼光谱的增强因子大于230倍。实验证明,同时具有超衍射空间分辨和拉曼光谱信号增强能力的针尖增强近场拉曼光谱术将是纳米材料和纳米结构表征的一种重要方法。  相似文献   

19.
Both tip‐enhanced Raman spectroscopy and scanning tunneling microscopy require the use of sharp tips. Electrochemical etching appears to be the most widely used method for preparing tips. To address the over‐etching problem associated with the silver tips by either using voltage or current as a feedback, we developed here an optical method‐based machine vision to achieve a quick cutoff of the circuit once the tip forms. It is a fully automated method with a response time of about 40 ms and is tolerated with any existing electrochemical etching method. We can significantly decrease the time of over‐etching of the silver tip when short rectangular pulses with a duty cycle of 28.6% were used. The mean radius of curvature was ca. 58 nm, as measured from over 50 tips. The capacities of silver tips for high‐resolution scanning tunneling microscopy imaging and high‐sensitivity tip‐enhanced Raman studies have been demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The tip-sample distance (z) dependence of tip-enhanced Raman scattering (TERS) has been investigated. The intensities of both, the Raman lines and the broad TERS background, exhibit strong decays with increasing z, which are nearly complete within 10 nm withdrawal of the STM tip in z direction. Interestingly, the maximum of the broad Lorentzian-shaped TER background is substantially blue shifted in energy with z. This effect is ascribed to a corresponding blue shift of the energies of localized plasmon modes upon tip retraction. Both experimental results fit very well data of a simple theoretical near-field model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号