首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 862 毫秒
1.
The molecular geometries, vibrational and UV-vis spectra of 9,10-dihydrobenzo(a)pyrene-7(8H)-one (9,10-H(2)BaP) and 7,8,9,10-tetrahydrobenzo(a)pyrene (7,8,9,10-H(4)BaP) were investigated using density functional theory (DFT-B3LYP), with the triple-ζ 6-311+G(d,p) and Dunning's cc-pVTZ basis sets. From the comparison of infrared experimental and calculated infrared, and Raman data comprehensive assignments are made. The calculated infrared frequencies below 1800 cm(-1) are in good agreement with experimental data, with an average deviation of <4 cm(-1). Using the B3LYP/6-311+G(d,p)//TD-B3LYP/6-311G(d,p) level of theory, transition energies, and oscillator strengths of the 30 lowest electronic absorption bands are assigned to π-π* transitions, with good qualitative agreement between experimental and simulated absorption data. In addition, the HOMO-LUMO gaps and their chemical hardness were analyzed.  相似文献   

2.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

3.
FT-IR and FT-Raman spectra of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (HMN) and 2-methoxy-1-naphthaldehyde (MN) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of HMN and MN were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using B3LYP/6-31G* and B3LYP/6-311+G** level and basis set combinations and was scaled using various scale factors yielding good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

4.
The solid phase mid FTIR and FT Raman spectra of 2-naphthoic acid (NA) and 6-bromo-2-naphthoic acid (BNA) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The fundamental vibrational frequencies and intensities of the vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP method and 6-311+G** basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

5.
The solid phase FTIR and FT-Raman spectra of 2-amino-4,6-dimethyl pyrimidine (ADMP) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The structure was investigated by utilizing density functional theory (DFT) calculations with the Becke 3-Lee-Yang-Parr (B3LYP) method employing the 6-31+G and 6-311++G basis sets. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data. Complete vibrational assignments were made on the basis of normal coordinate analysis (NCA) for the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The observed and the calculated spectra were found to be in good agreement. The thermodynamic properties like entropies and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized structures.  相似文献   

6.
Laser Raman (3500-50 cm(-1)) and IR (4000-400 cm(-1)) spectral measurements have been made on the laboratory prepared solid 3-acetylcoumarin. Molecular electronic energy, equilibrium geometrical structure and harmonic vibrational spectra have been computed at the RHF/6-31G(d,p) and B3LYP/6-31G(d,p) levels of theory. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The B3LYP/6-31G(d,p) geometrical parameters, and frequencies of the C=O in the pyrone and acetyl group are in good agreement with experiment. The difference in the frequencies due to the two carbonyl groups, 50 cm(-1), which is attributed to the conjugation effect, is accounted for by the B3LYP to be 56cm(-1).  相似文献   

7.
Fourier-transform laser Raman (3500-50 cm(-1)) and infrared (4000-400 cm(-1)) spectral measurements have been made for the solid 3-chloro-4-methoxybenzaldehyde. The electronic structure calculations -ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) -- have been performed with 6-31G* and 6-311G* basis sets. Molecular electronic energies, equilibrium geometries, IR and Raman spectra have been computed. Potential energy distribution (PEDs) and normal mode analysis have also been performed. A complete assignment of the observed spectra has been proposed. Investigation of the relative orientation of the aldehydic oxygen and chlorine atom with respect to the methoxy group has shown that two forms, O-cis and O-trans exist, with O-trans form being more stable. The energy difference between O-cis and O-trans forms is 0.057 kcal/mol (21 cm(-1)) with B3LYP/6-31G*, which is less than the calculated torsional vibrational frequencies of the aldehyde and methoxy group. In the CH (O) aldehydic stretching region five observed bands are probably due to multiplet Fermi resonance. An infrared doublet near 1700 cm(-1) with nearly equal intensities has been ascribed to the Fermi resonance: the two bands at 1696 and 1679 cm(-1) arise due to the interaction between the CO stretching fundamental and a combination of O-CH(3) and CC stretching vibrations.  相似文献   

8.
The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. In addition, the IR spectra in CCl(4) at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.  相似文献   

9.
The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-6-methoxypyridine have been recorded in the range 3700-400 and 3700-100 cm(-1), respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound was carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with the theoretical frequencies computed by DFT gradient calculations (B3LYP method) employing the 6-31G(d,p), cc-pVTZ and/6-311++G(d,p) basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out using DFT force fields utilising Wilson's FG matrix method. The influence of the substituents bulky chlorine atom and the methoxy group on the spectral characteristics of the compound has been discussed. The electronic spectrum determined by TD-DFT method is compared with the observed electronic spectrum.  相似文献   

10.
The FT-IR spectrum of 2,6-di-tert-butyl-4-methylphenol [butylated hydroxy toluene] was recorded in the region 4000-400 cm(-1). The FT-Raman spectrum of butylated hydroxy toluene was also recorded in the region 3500-50 cm(-1). The molecular structure and vibrational frequencies of butylated hydroxy toluene (BHT) have been investigated with combined experimental and theoretical study. Two stable conformers of the title compound were obtained from the result of geometry optimizations of these possible conformers. The conformer 1 is (approximately 2.6 kcal/mol) more stable than conformer 2. Geometry optimizations and vibrational frequency calculations were performed by BLYP and B3LYP methods using 6-31G(d), 6-31G(d,p) and 6-31+G(d,p) as basis sets. The scaled frequencies were compared with experimental spectrum and on the basis of this comparison; assignments of fundamental vibrational modes were examined. Comparison of the experimental spectra with harmonic vibrational wavenumbers indicates that B3LYP/6-31G(d) results are more accurate. Predicted electronic absorption spectra of BHT from TD-DFT calculation have been analyzed and compared with the experimental UV-vis spectrum. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.  相似文献   

11.
The Fourier transform Raman and Fourier transform infrared spectra of 2-amino-4,5-difluorobenzoic acid (2A45DFBA) were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, depolarization ratios were calculated by HF and density functional B3LYP method with the 6-31+G(d, p) and 6-311+G(d, p) basis sets. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31+G(d, p)/6-311+G(d, p) and B3LYP/6-31+G(d, p)/6-311+G(d, p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 2-amino-4,5-difluorobenzoic acid is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

12.
This work deals with the vibrational spectroscopy of 4-amino-2,6-dichloropyridine (ADCP) and 2-chloro-3,5-dinitropyridine (CDNP) by means of quantum chemical calculations. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G(*) and B3LYP/6-311+G(**) methods and basis set combinations, and was scaled using various scale factors which yields a good agreement between observed and calculated frequencies. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results of the calculations were applied to simulated infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra.  相似文献   

13.
The laser Raman and Fourier transform infrared spectra of 2-amino-5-methylphenol were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities, Raman scattering activities, depolarization ratios and reduced masses were calculated by HF and density functional B3LYP methods by using 6-311+G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. The thermodynamic functions of the title compound were also performed at HF/6-31G(d,p)/6-311+G(d,p) and B3LYP/6-31G(d,p)/6-311+G(d,p) levels of theory. A detailed interpretations of the infrared and Raman spectra of 2-amino-5-methylphenol is reported. The theoretical spectrograms for FT-IR spectra of the title molecule have been constructed.  相似文献   

14.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

15.
Theoretical model of vibrational interactions in hydrogen-bonded salicylic acid dimer is presented which takes into account the adiabatic couplings between high- and low-frequency O-H and O...O stretching vibrations, resonance interactions between both intermolecular hydrogen bonds and between inter- and intramolecular hydrogen bonds, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The model is used for theoretical simulation of the nu(s) stretching bands of salicylic acid and its OD derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far infrared, Raman, and low-frequency Raman spectra of the polycrystalline salicylic acid and its deuterated derivative have been measured. The geometry and experimental frequencies are compared with the results of density-functional theory calculations performed at the B3LYP6-31 ++ G**, B3LYP/cc-pVTZ, B3PW916-31 ++ G**, and B3PW91/cc-pVTZ levels. O-H, O-D, and O...O stretching frequencies are used in theoretical simulation of the nu(s) stretching bands.  相似文献   

16.
The FT-IR and FT-Raman spectra of 2-bromo-4-chlorotoluene (2B4CT) molecule have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. Optimized geometrical structures, harmonic vibrational frequencies, intensities, reduced mass, force constants and depolarization ratio have been computed by the B3 based (B3LYP) density functional methods using 6-31+G(d,p) and 6-311++G(d,p) basis sets. The observed FT-IR and FT-Raman vibrational frequencies are analysed and compared with theoretically predicted vibrational frequencies. The geometries and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The Mulliken charges, the natural bonding orbital (NBO) analysis, the values of electric dipole moment (μ) and the first-order hyperpolarizability (β) of the investigated molecule were computed using DFT calculations. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The influences of bromine atom, chlorine atom and methyl group on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

17.
18.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

19.
The vibrational spectra of 4-bromo benzonitrile have been reported. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-311+G basis set combination and were scaled using various scale factors which yielded a good agreement between observed and calculated frequencies. The vibrational spectra were interpreted with the aid of normal coordinate analysis. The results of the calculations were applied to simulated infrared and Raman spectra of the title compound which showed excellent agreement with the observed spectra.  相似文献   

20.
This work deals with the vibrational spectroscopy of succinimide and N-bromosuccinimide. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP/6-31G(*) and B3LYP/6-311+G(**) methods and basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Unambiguous vibrational assignment of all the fundamentals were made using the total energy distribution (TED).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号