首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The FT-IR and FT-Raman spectra of 3-Bromo phenol (3-BP) molecule have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1). The molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-fock (HF) and DFT (B3LYP) methods with 6-31G (d, p) and 6-311G (d, p) basis sets. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. Making use of the recorded data, the complete vibrational assignments are made and analysis of the observed fundamental bands of molecule is carried out. The geometries and normal modes of vibrations obtained from ab initio HF and B3LYP calculations are in good agreement with the experimentally observed data. The differences between the observed and scaled wave number values of most of the fundamentals are very small in DFT than HF. The inductive effect of halogen atom in the molecule has also been investigated.  相似文献   

2.
The FT-IR and FT-Raman vibrational spectra of 1,3-dichlorobenzene (1,3-DCB) have been recorded using Bruker IFS 66 V Spectrometer in the range 4000-100 cm(-1). A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree-Fock (HF) and DFT (B3LYP) methods with 6-31++G (d, p) and 6-311++G (d, p) basis sets. With the help of different scaling factors, the observed vibrational wave numbers in FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range. The inductive effect of Chlorine atoms in the benzene molecule has also been investigated.  相似文献   

3.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

4.
The FT-IR and FT-Raman spectra of 1-bromo-4-chlorobenzene (1-Br-4-CB) have been recorded using Bruker IFS 66V spectrometer in the region of 4000-100 cm(-1). Ab-initio-HF (HF/6-311+G (d, p)) and DFT (B3LYP/6-31++G (d, p)/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. Comparison of simulated spectra with the experimental spectra provides important information, the computational method have the ability to describe the vibrational methods. The frequency estimation analysis on HF and DFT is made. The impact of di-substituted halogens on the benzene molecule has also been discussed.  相似文献   

5.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

6.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

7.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

8.
The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-6-methoxypyridine have been recorded in the range 3700-400 and 3700-100 cm(-1), respectively. The complete vibrational assignment and analysis of the fundamental modes of the compound was carried out using the observed FTIR and FT-Raman data. The vibrational frequencies determined experimentally were compared with the theoretical frequencies computed by DFT gradient calculations (B3LYP method) employing the 6-31G(d,p), cc-pVTZ and/6-311++G(d,p) basis sets for the optimised geometry of the compound. The geometry and normal modes of vibration obtained from the DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out using DFT force fields utilising Wilson's FG matrix method. The influence of the substituents bulky chlorine atom and the methoxy group on the spectral characteristics of the compound has been discussed. The electronic spectrum determined by TD-DFT method is compared with the observed electronic spectrum.  相似文献   

9.
In this work, the experimental and theoretical spectra of 4-chloro-2-bromoacetophenone (4C2BAP) are studied. FT-IR and FT-Raman spectra of title molecule have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (B3LYP) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values are compared with the experimental FT-IR and FT-Raman spectra. The DFT (B3LYP/6-311G (d, p)) calculations are more reliable than the ab initio HF/6-311G (d, p) calculations for the vibrational study of 4C2BAP. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands of the carbonyl and acetyl groups due to the presence of halogens (Cl and Br) in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

10.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

11.
The Fourier Transform Infrared spectrum of (S)-4 ethyl-4-hydroxy-1H-pyrano [3',4':6,7]-indolizino-[1,2-b-quinoline-3,14-(4H,12H)-dione] [camptothecin] was recorded in the region 4000-400 cm(-1). The Fourier Transform Raman spectrum of camptothecin (CPT) was also recorded in the region 3500-50 cm(-1). Quantum chemical calculations of geometrical structural parameters and vibrational frequencies of CPT were carried out by MP2/6-31G(d,p) and density functional theory DFT/B3LYP/6-311++G(d,p) methods. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. Most of the computed frequencies were found to be in good agreement with the experimental observations. The isotropic chemical shifts computed by (13)C and (1)H NMR analysis also show good agreement with experimental observations. Comparison of calculated spectra with the experimental spectra provides important information about the ability of computational method to describe the vibrational modes of large sized organic molecule.  相似文献   

12.
In the present study, the FT-IR and FT-Raman spectra of 4-chloro-2-methylaniline (4CH2MA) have been recorded in the range of 4000-100 cm(-1). The fundamental modes of vibrational frequencies of 4CH2MA are assigned. All the geometrical parameters have been calculated by HF and DFT (LSDA, B3LYP and B3PW91) methods with 6-31G (d, p) and 6-311G (d, p) basis sets. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for aniline and some substituted aniline. The harmonic and anharmonic vibrational wavenumbers, IR intensities and Raman activities are calculated at the same theory levels used in geometry optimization. The calculated frequencies are scaled and compared with experimental values. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The impact of substitutions on the benzene structure is investigated. The molecular interactions between the substitutions (Cl, CH(3) and NH(2)) are also analyzed.  相似文献   

13.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

14.
The energy, geometrical parameters and vibrational wavenumbers of crotonaldehyde were calculated by using ab initio and B3LYP with 6-31G(d,p) and 6-311G(d,p) basis sets. The FT-IR and FT-Raman spectra for liquid state crotonaldehyde have been recorded in the region 3400-400 cm(-1) and 3400-100 cm(-1), respectively and compared with the theoretical spectrographs constructed from the scaled harmonic vibrational frequencies calculated at HF and DFT levels. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Detailed interpretations on vibrational modes have been made on the observed and theoretical spectra and PED for each mode was also reported more precisely. HOMO and LUMO energy levels are constructed and the corresponding theoretical frontier energy gaps are calculated to realise the charge transfer occurring in the molecule. The thermodynamic properties of the title compound have been calculated at different temperatures and the results reveals the standard heat capacities (C(0)(p)), standard entropies (S(0)) and standard enthalpy changes (ΔH(0)) increases with rise in temperature.  相似文献   

15.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

16.
The FT-IR and FT-Raman spectra of 1-bromo-3-fluorobenzene (C6H4FBr) molecule have been recorded using Bruker IFS 66 V spectrometer in the range of 4000–100 cm−1. The molecular geometry and vibrational frequencies in the ground state are calculated using the DFT (B3LYP, B3PW91 and MPW91PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The isotropic DFT (B3LYP, B3PW91 and MPW1PW91) analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by B3LYP methods. The complete data of this molecule provide the information for future development of substituted benzene. The influence of bromine and fluorine atom on the geometry of benzene and its normal modes of vibrations has also been discussed. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, was performed by time dependent DFT (TD-DFT) approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated in gas phase, revealing the correlations between standard heat capacities (C) standard entropies (S), standard enthalpy changes (H) and temperatures.  相似文献   

17.
In this work, the experimental and theoretical spectra of 3-bromoanisole (3-BA) are studied. FT-IR and FT-Raman spectra of title molecule in the liquid phase have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (LSDA and MPW1PW91) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values have been compared with the experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found in good agreement. The DFT-LSDA/6-311G (d, p) calculations have been found are more reliable than the ab initio HF/6-31G (d, p) calculations for the vibrational study of 3-BA. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands due to the substitutions in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

18.
The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.  相似文献   

19.
The FT-IR spectrum of 2,6-di-tert-butyl-4-methylphenol [butylated hydroxy toluene] was recorded in the region 4000-400 cm(-1). The FT-Raman spectrum of butylated hydroxy toluene was also recorded in the region 3500-50 cm(-1). The molecular structure and vibrational frequencies of butylated hydroxy toluene (BHT) have been investigated with combined experimental and theoretical study. Two stable conformers of the title compound were obtained from the result of geometry optimizations of these possible conformers. The conformer 1 is (approximately 2.6 kcal/mol) more stable than conformer 2. Geometry optimizations and vibrational frequency calculations were performed by BLYP and B3LYP methods using 6-31G(d), 6-31G(d,p) and 6-31+G(d,p) as basis sets. The scaled frequencies were compared with experimental spectrum and on the basis of this comparison; assignments of fundamental vibrational modes were examined. Comparison of the experimental spectra with harmonic vibrational wavenumbers indicates that B3LYP/6-31G(d) results are more accurate. Predicted electronic absorption spectra of BHT from TD-DFT calculation have been analyzed and compared with the experimental UV-vis spectrum. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.  相似文献   

20.
The FTIR and FT-Raman spectra of morpholine-4-ylmethylthiourea (MMTU) were recorded in the region of mid-IR (400-4,000 cm(-1)). Initial geometry generated from the standard geometrical parameters was relaxed without any constraint on the potential energy surface at MP2 and DFT levels adopting the standard 6-31++G and 6-311+G basis set. With the help of two specific scaling procedures the computed harmonic frequencies have been compared with the observed vibrational wave numbers of FTIR and FT-Raman spectra and assigned to different normal modes of the molecule. Most of the vibrational modes have wave numbers in the expected range. The appropriate theoretical spectrograms of the IR spectra of MMTU have been also constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号