首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The LaGa1−xyCoxMgyO3−δ solid solutions with rhombohedrally-distorted perovskite structure were ascertained to form in the concentration range of 0≤y≤0.10 at x=0.60 and 0≤y≤0.20 at x=0.35–0.40. Increasing cobalt content results in increasing electrical conductivity and thermal expansion of the perovskites. Thermal expansion coefficients of the LaGa1−xyCoxMgyO3−δ ceramics were calculated from the dilatometric data to vary in the range of 12.4–19.8×10−6 K−1 at 300–1100 K. Doping La(Ga,Co)O3−δ solid solutions with magnesium leads to increasing oxygen nonstoichiometry, electronic and oxygen ionic conductivity. Oxygen permeation fluxes through LaGa1−xyCoxMgyO3−δ membranes were found to be limited by the bulk ionic conduction and to increase with magnesium concentration, being essentially independent of cobalt content.  相似文献   

2.
The formation of tetragonal R2(FeCo)14C phase has been examined in as-cast and melt-spun R14Fe78−xCoxC8 alloys with cobalt substitutions (R = Y, Dy, Nd). The magnetic properties over a temperature range and the microstructure have been studied as a function of cobalt content. The Curie temperature is increased with Co content but the anisotropy K is decreased. High cobalt content leads to the formation of 1:5 phase. High corecivities have been developed in as-cast and melt-spun Dy14Fe78−xCoxC8 alloys with Co content at zero and 32 at %, respectively. As-cast Nd16Fe78−xCoxC8 alloys did not show any permanent magnetic properties although they had the 2:14:1 phase. However, melt-spun and powdered Nd---Fe---Co---C samples showed a coercivity with the highest value corresponding to a melt-spun Nd14Fe78C8 sample. Microstructure studies showed that the high HC in ribbons is due to the fine grain size which is in the range of 500–1000 Å.  相似文献   

3.
Formation of the La2Cu1−xCoxO4+δ solid solutions with orthorhombic K2NiF4-type structure was found to be in the range of 0≤x≤0.30 at temperatures above 1270 K. Incorporating cobalt into the copper sublattice of lanthanum cuprate leads to increasing oxygen hyperstoichiometry and decreasing electrical conductivity. Thermal expansion coefficients of the La2Cu1−xCoxO4+δ (x=0.02–0.30) ceramics at 470–1100 K were calculated from the dilatometric data to vary in the range (12.2–13.2)×106 K1. Studying the dependence of oxygen permeation fluxes through La2Cu(Co)O4+δ on the membrane thickness demonstrated that the oxygen transport at the thickness values below 1 mm is limited by both surface exchange rate and bulk ionic conductivity. Oxygen permeability of the La2Cu1−xCoxO4+δ solid solutions was ascertained to increase with cobalt concentration at x=0.02–0.10 and to decrease with further dopant additions, indicating a participation of interstitial oxygen in the ionic transport.  相似文献   

4.
The magnetic properties of nanocomposite melt-spun magnets with composition Sm16−xCo68+xB16 (x=0–10, 2 at% interval) and Sm8Co92−yBy (y=10–18, 2 at% interval) have been studied systematically. Several ribbons were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 700–800°C for 2.5–40 min. XRD results and magnetization versus temperature curves showed that almost all of the samples were composed of the tetragonal Sm2Co14B and rhombohedral SmCo12B6 phases which are not magnetically hard at room temperature. However, a relatively high coercivity in the range of 3.5–5.5 kOe has been obtained in these samples. The highest coercivity of 5.5 kOe and a very promising β value of −0.28%/°C were obtained in Sm8Co74B18 ribbons annealed at 750°C for 5 min. The high coercivities are attributed to the small grain size of the 2 : 14 : 1 phase, in which the large surface areas enhance its effective anisotropy, and make it uniaxial type.  相似文献   

5.
This paper gives an analysis of the high temperature susceptibility of diluted semimagnetic-semiconductor Zn1 − xMnxS. The high-temperature susceptibility of Zn1 − xMnxS was found to behave in accordance with the Curie-Weiss law. From χ(T) measurements the exchange integral of Mn2+ -Mn2+ interaction 2J1/kB = (-34.6±0.5) K (effective exchange integral) was obtained. A spin S = 2.6±0.1, close to its atomic value S = , was also found. The role of the superexchange in this alloy is shortly discussed at the end of the paper.  相似文献   

6.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


7.
The equilibrium oxygen content as a function of the temperature and oxygen pressure was measured for the solid solution YBa2Cu3−xCoxO6+δ, where x=0, 0.2, 0.4, 0.6, 0.8, by using coulometric titration in the temperature range 600–850°C and oxygen pressures between 10−5 and 1.0 atm. The change in the partial molar enthalpy and entropy of the intercalated oxygen was determined at different oxygen and cobalt contents. The oxygen chemical diffusion was studied by thermogravimetric relaxation in the oxygen-controlled atmosphere. The thermodynamic data were employed to determine how the chemical diffusion coefficient, the thermodynamic factor and the random-diffusion coefficient depend on oxygen content in specimens with different cobalt concentration. The oxygen intercalation thermodynamics and diffusivity results provide evidence of ordering phenomena on a microscopic scale in the basal plane of the tetragonal solid solution YBa2Cu3−xCoxO6+δ. A model for the oxygen diffusion is suggested to explain the large difference between the random and tracer diffusion coefficients in YBa2Cu3O6+δ  相似文献   

8.
A study of the magnetic properties of Fe100 − xNdx (18 x 50) films made by rf sputtering has been carried out. The perpendicularly magentized films were fabricated for compositions in the range from x = 35 to 50 at substrate temperatures between 210 to 290°C. The intrinsic perpendicular magnetic anisotropy constant Ku is maximum at about x = 40 where Ku is about 1 × 107 erg/cm3 at room temperature. The temperature dependence of Ku implies that the origin of the perpendicular magnetic anisotropy may be related to some sort of atomic ordering of crystalline clusters in an amorphous matrix.  相似文献   

9.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

10.
A large positive magnetoresistance (MR) has been found in micro-sized Fex–C1−x composites. At a magnetic field of 5 T, the Fe0.2–C0.8 composite has the largest MR, 53.8% and 190% at room temperature and at 5 K, respectively. The magnetic field dependence of the MR can be described approximately as MR∝Bn, and the value of exponent n is determined by the Fe weight concentration and temperature, ranging from 1/4 to 6/4. It appears that Fex–C1−x has a linear field dependence of the positive MR at different temperatures. The possible mechanism for the positive MR is discussed.  相似文献   

11.
Ti substituted BiFe1−xTixO3+δ films have been prepared on indium–tin oxide (ITO)/glass substrates by the sol–gel process. The films with x=0.00–0.20 were prepared at an annealing temperature of 600 °C. X-ray diffraction patterns indicate that all films adopt R3m structure and the films with x=0 and 0.10 show pure perovskite phase. Cross-section scanning shows the thickness of the films is about 300 nm. Through 0.05 Ti substitution, the 2Pr increases to 8.30 μC/cm2 from 2.12 μC/cm2 of the un-substituted BiFeO3 film and show enhanced ferroelectricity at room temperature. The 2Pr values are 2.63 and 0.44 μC/cm2 for the films with x=0.01 and 0.2, respectively. Moreover, the films with x=0.05 and 0.10 show enhanced dielectric property since the permittivity increases near 150 at the same measuring frequency. Through the substitution of Ti, the leakage conduction is reduced for the films with x=0.05–0.20.  相似文献   

12.
Far-infrared and millimeter wave spectra of copper ion conducting crystal RbCu4Cl3+xI2−x, which has the same structure as the room temperature silver ion conductor RbAg4I5, were investigated. Broad absorption peaks observed around 40, 80, and 110–200 cm−1 at room temperature show doublet structures at low temperature; this may be attributed to the difference of local structure by chlorine and iodine ion. The 110–200 cm−1 bands seem to be symmetric breathing modes of CuX4 (X = Cl or I) tetrahedron and the frequency shift coincides with the square root of the mass ratio of conduction ions. The 80 cm−1 band seems to be Rb-X vibration in RbX6 octahedron. The 40 cm−1 band seems to be the attempt mode which is an outward motion of the mobile ion in halogen cage. The increase of the absorption intensity at the low energy side with temperature corresponds to an increase of the DC conductivity. Plasmon fitting in energy loss function spectra was attempted.  相似文献   

13.
Polycrystalline samples of M-type hexaferrites BaFe12−2xRuxZnxO19 and BaFe12−2xRuxCoxO19 with 0x0.45 have been prepared by a classical sintering method. The evolutions with x of the cell parameters, the saturation magnetization and the magnetic transition temperature have been measured; in this range of small doping ratios, saturation magnetization and Curie temperature of substituted hexaferrites remain close to those of the undoped BaFe12O19. X-ray diffraction measurements on oriented powders show that a change of magnetocrystalline anisotropy from axial to planar occurs in both cases for a small substituting ratio xc=0.375. Microwave electromagnetic characteristics have been studied on the ceramic samples from 0.1 to 10 GHz. The behaviour of the magnetic losses (μ″) corroborates the anisotropy change when doping; a convolution of the dissipation mechanisms (domain wall motions and gyromagnetism) is obtained for xc. The level of the magnetic losses is discussed in relation with others substituted Ba-hexaferrites.  相似文献   

14.
By undertaking AC electrochemical impedance experiments on yttria stabilised zirconia electrolytes with polished Y1Ba2Cu3O7−x electrodes, the activation energy for oxygen ion transport within the bulk of Y1Ba2Cu3O7−x, in air, over the temperature range 823 K–1043 K, was determined to be 1.50 ± 0.05 eV. At 1000 K the oxygen ionic conductivity was calculated to be around one order of magnitude lower than that in yttria stabilised zirconia. Typical calculated values were σ=5×10−5 (ω cm)−1 and 6×10−3 (ω cm)−1 at the respective temperatures 823 K and 1043 K. By employing a similar cell but with Y1Ba2Cu3O7−x paste electrodes, oxygen transfer between the Y1Ba2Cu3O7−x and the electrolyte was found to occur via a surface diffusional processes. Over the temperature range 873 K–1098 K, in air, the activation energy for in-diffusion at the surface was found to be 1.4±0.1 eV and that for out-diffusion at the surface to be 1.76±0.05 eV.  相似文献   

15.
Magnetic transitions in La(Fe1−xCox)11.4Si1.6 compounds with x=0–0.08, have been studied by DC magnetic measurements and Mössbauer spectroscopy. The temperature dependence of the Landau coefficients has been derived by fitting the magnetization, M0H), using the Landau expansion of the magnetic free energy. For x0.02 there is a strongly first-order magnetic phase transition between ferromagnetic and paramagnetic (F–P) states in zero external field and a metamagnetic transition from paramagnetic to ferromagnetic (P–F) above Tc. Increasing the cobalt content drives the F–P transition towards second order and eliminates the metamagnetic transition.  相似文献   

16.
A detailed investigation of the defect structure of the Co doped BIMEVOX solid electrolyte, Bi2V1 − xCoxO5.5 − 3x/2 (x = 0.1 and x = 0.2), quenched from high temperature, has been carried out using X-ray and neutron powder diffraction data measured at room temperature. The structure is built up from alternating layers of [Bi2O2]n2n+ and [V1 − xCoxO3.5 − 3x/2]n2n with disorder limited to the vanadate layer. The ideal V/Co co-ordination is octahedral with corner sharing of equatorial oxygens. The refinements show that the true structure is distorted, with disorder in both apical and equatorial oxygens and oxygen vacancies concentrated in the equatorial positions. Detailed analysis of the oxygen site occupancies reveals two main types of V/Co co-ordination viz. distorted octahedral and distorted tetrahedral. The majority of the sites in both compositions are tetrahedral.  相似文献   

17.
The magnetization of magnetically-aligned Gd2Fe14−xCoxB samples with x = 0, 2, 4, 6, 8.4, 11.2 and 14 has been measured at 4.2 K in fields up to 14 T and the anisotropy fields have been derived. The effect of substitution of Co for Fe on the magnetic properties of Gd2Fe14B has been investigated.  相似文献   

18.
Tantalum oxide thin films were prepared by photo-assisted atomic layer deposition (Photo-ALD) in the substrate temperature range of 170–400 °C using Ta(OC2H5)5 and H2O as precursors. The constant growth rates of 0.42 and 0.47 Å per cycle were achieved for the films grown by normal ALD and Photo-ALD, respectively. The increased growth rate in Photo-ALD is probably due to the reactive surface by photon energy and faster surface reaction. In Photo-ALD, however, the constant growth rate started at lower temperature of 30 °C and one cycle time shortened up to 5.7 s than that of normal ALD. The films grown by normal ALD and Photo-ALD were amorphous and very smooth (0.21–0.35 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. Also, the refractive index was found to be 2.12–2.16 at the substrate temperature of 190–300 °C, similar to that of the film grown by normal ALD. However, the remarkably low leakage current density of 0.6×10−6 A/cm2 to 1×10−6 A/cm2 at applied field of 1 MV/cm is several order of magnitude smaller than that of normal ALD, probably due to the presence of reactive atom species.  相似文献   

19.
High field magnetization measurements have been performed to examine the existence of itinerant metamagnetism in exchange-enhanced systems related to YCo2 together with Fe1−x CoxSi. In the Y(CoxFex)2 system, the meta magnetism inherent in YCo2 has been observed in 0.04 x0.07. The transition is not as sharp as in the Y(Co1−xAlx)2 system. Other exchange-enhanced paramagnets Y(CoxCux)2 and Y1−xLaxCox2 and weakly itinerant ferromagnet Fe1−xCoxSi exhibit no metamagnetic transition up to 430 kOe.  相似文献   

20.
The effects of Cu doping in MgB2 superconductor has been studied at different processing temperatures. The polycrystalline samples of Mg1−xCuxB2 with x = 0.05 were synthesized through the in-situ solid sate reaction method in argon atmosphere at different temperature range between 800–900 °C. The samples were characterized through X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and low temperature RT measurement techniques for the phase verification, microstructure and superconducting transition temperature, respectively. The XRD patterns of Mg1−xCuxB2 (x = 0.05) do not exhibit any impurity traces of MgB4 or MgB6 and they show the sharp transition in the samples prepared at 850 °C. The onset transition temperature of the prepared samples is around 39 K, which is almost the same as that for the pure MgB2. This indicates that Cu doping in MgB2 does not affect the transition temperature. The SEM micrograph of Mg0.95Cu0.05B2 has shown that the sample is dense with grain size smaller than 1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号