首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this work, we study a nonsmooth optimization problem with generalized inequality constraints and an arbitrary set constraint. We present necessary conditions for a point to be a strict local minimizer of order k in terms of higher-order (upper and lower) Studniarski derivatives and the contingent cone to the constraint set. In the same line, when the initial space is finite dimensional, we develop sufficient optimality conditions. We also provide sufficient conditions for minimizers of order k using the lower Studniarski derivative of the Lagrangian function. Particular interest is put for minimizers of order two, using now a special second order derivative which leads to the Fréchet derivative in the differentiable case.  相似文献   

2.
The problem of optimal control of nonlinear control and state constrained control problems, where the state constraint may involve differential operators and the cost functionals may be nonsmooth, is studied. For this class of problems, necessary optimality conditions using techniques from infinite dimensional optimization theory adapted to the framework of control problems are derived. It is shown that the underlying structure admits a considerable relaxation of the classical constraint qualifications. The theory then is applied to examples of various nonlinear elliptic equations and state constraints.  相似文献   

3.
We consider a Bolza optimal control problem with state constraints. It is well known that under some technical assumptions every strong local minimizer of this problem satisfies first order necessary optimality conditions in the form of a constrained maximum principle. In general, the maximum principle may be abnormal or even degenerate and so does not provide a sufficient information about optimal controls. In the recent literature some sufficient conditions were proposed to guarantee that at least one maximum principle is nondegenerate, cf. [A.V. Arutyanov, S.M. Aseev, Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints, SIAM J. Control Optim. 35 (1997) 930–952; F. Rampazzo, R.B. Vinter, A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control, IMA 16 (4) (1999) 335–351; F. Rampazzo, R.B. Vinter, Degenerate optimal control problems with state constraints, SIAM J. Control Optim. 39 (4) (2000) 989–1007]. Our aim is to show that actually conditions of a similar nature guarantee normality of every nondegenerate maximum principle. In particular we allow the initial condition to be fixed and the state constraints to be nonsmooth. To prove normality we use J. Yorke type linearization of control systems and show the existence of a solution to a linearized control system satisfying new state constraints defined, in turn, by linearization of the original set of constraints along an extremal trajectory.  相似文献   

4.
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derived under the Mangasarian-Fromovitz condition and under the assumption that the state and control constraint functions are smooth. In this paper we derive necessary optimality conditions for problems with nonsmooth mixed state and control constraints under constraint qualifications based on pseudo-Lipschitz continuity and calmness of certain set-valued maps. The necessary conditions are stratified, in the sense that they are asserted on precisely the domain upon which the hypotheses (and the optimality) are assumed to hold. Moreover necessary optimality conditions with an Euler inclusion taking an explicit multiplier form are derived for certain cases.  相似文献   

5.
Patrick Mehlitz 《Optimization》2017,66(10):1533-1562
We consider a bilevel programming problem in Banach spaces whose lower level solution is unique for any choice of the upper level variable. A condition is presented which ensures that the lower level solution mapping is directionally differentiable, and a formula is constructed which can be used to compute this directional derivative. Afterwards, we apply these results in order to obtain first-order necessary optimality conditions for the bilevel programming problem. It is shown that these optimality conditions imply that a certain mathematical program with complementarity constraints in Banach spaces has the optimal solution zero. We state the weak and strong stationarity conditions of this problem as well as corresponding constraint qualifications in order to derive applicable necessary optimality conditions for the original bilevel programming problem. Finally, we use the theory to state new necessary optimality conditions for certain classes of semidefinite bilevel programming problems and present an example in terms of bilevel optimal control.  相似文献   

6.
A family of parametric linear-quadratic optimal control problems is considered. The problems are subject to state constraints. It is shown that if weak second-order sufficient optimality conditions and standard constraint qualifications are satisfied at the reference point, then, for small perturbations of the parameter, there exists a locally unique stationary point, corresponding to a solution. This point is a Lipschitz continuous function of the parameter.  相似文献   

7.
《Optimization》2012,61(5):717-727
This article deals with a class of non-smooth semi-infinite programming (SIP) problems in which the index set of the inequality constraints is an arbitrary set not necessarily finite. We introduce several kinds of constraint qualifications for these non-smooth SIP problems and we study the relationships between them. Finally, necessary and sufficient optimality conditions are investigated.  相似文献   

8.
A maximum principle for optimal control problems with mixed constraints   总被引:1,自引:0,他引:1  
Necessary conditions in the form of maximum principles are derivedfor optimal control problems with mixed control and state constraints.Traditionally, necessary condtions for problems with mixed constraintshave been proved under hypothesis which include the requirementthat the Jacobian of the mixed constraint functional, with respectto the control variable, have full rank. We show that it canbe replaced by a weaker ‘interiority’ hypothesis.This refinement broadens the scope of the optimality conditions,to cover some optimal control problems involving differentialalgebraic constraints, with index greater than unity.  相似文献   

9.
A new optimality condition for minimization with general constraints is introduced. Unlike the KKT conditions, the new condition is satisfied by local minimizers of nonlinear programming problems, independently of constraint qualifications. The new condition is strictly stronger than and implies the Fritz–John optimality conditions. Sufficiency for convex programming is proved.  相似文献   

10.
This paper is devoted to the study of nonsmooth multiobjective semi-infinite programming problems in which the index set of the inequality constraints is an arbitrary set not necessarily finite. We introduce several kinds of constraint qualifications for these problems, and then necessary optimality conditions for weakly efficient solutions are investigated. Finally by imposing assumptions of generalized convexity we give sufficient conditions for efficient solutions.  相似文献   

11.
Necessary conditions of optimality are derived for optimal control problems with pathwise state constraints, in which the dynamic constraint is modelled as a differential inclusion. The novel feature of the conditions is the unrestrictive nature of the hypotheses under which these conditions are shown to be valid. An Euler Lagrange type condition is obtained for problems where the multifunction associated with the dynamic constraint has values possibly unbounded, nonconvex sets and satisfies a mild `one-sided' Lipschitz continuity hypothesis. We recover as a special case the sharpest available necessary conditions for state constraint free problems proved in a recent paper by Ioffe. For problems where the multifunction is convex valued it is shown that the necessary conditions are still valid when the one-sided Lipschitz hypothesis is replaced by a milder, local hypothesis. A recent `dualization' theorem permits us to infer a strengthened form of the Hamiltonian inclusion from the Euler Lagrange condition. The necessary conditions for state constrained problems with convex valued multifunctions are derived under hypotheses on the dynamics which are significantly weaker than those invoked by Loewen and Rockafellar to achieve related necessary conditions for state constrained problems, and improve on available results in certain respects even when specialized to the state constraint free case.

Proofs make use of recent `decoupling' ideas of the authors, which reduce the optimization problem to one to which Pontryagin's maximum principle is applicable, and a refined penalization technique to deal with the dynamic constraint.

  相似文献   


12.
Mathematical programs with equilibrium constraints are optimization problems which violate most of the standard constraint qualifications. Hence the usual Karush-Kuhn-Tucker conditions cannot be viewed as first order optimality conditions unless relatively strong assumptions are satisfied. This observation has lead to a number of weaker first order conditions, with M-stationarity being the strongest among these weaker conditions. Here we show that M-stationarity is a first order optimality condition under a very weak Abadie-type constraint qualification. Our approach is inspired by the methodology employed by Jane Ye, who proved the same result using results from optimization problems with variational inequality constraints. In the course of our investigation, several concepts are translated to an MPEC setting, yielding in particular a very strong exact penalization result.  相似文献   

13.
《Optimization》2012,61(6):517-534
We recapitulate the well-known fact that most of the standard constraint qualifications are violated for mathematical programs with equilibrium constraints (MPECs). We go on to show that the Abadie constraint qualification is only satisfied in fairly restrictive circumstances. In order to avoid this problem, we fall back on the Guignard constraint qualification (GCQ). We examine its general properties and clarify the position it occupies in the context of MPECs. We show that strong stationarity is a necessary optimality condition under GCQ. Also, we present several sufficient conditions for GCQ, showing that it is usually satisfied for MPECs.  相似文献   

14.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

15.
In this paper we study second-order optimality conditions for the multi-objective programming problems with both inequality constraints and equality constraints. Two weak second-order constraint qualifications are introduced, and based on them we derive several second-order necessary conditions for a local weakly efficient solution. Two second-order sufficient conditions are also presented.  相似文献   

16.
In this paper, we present higher-order analysis of necessary and sufficient optimality conditions for problems with inequality constraints. The paper addresses the case when the constraints are not assumed to be regular at a solution of the optimization problems. In the first two theorems derived in the paper, we show how Karush–Kuhn–Tucker necessary conditions reduce to a specific form containing the objective function only. Then we present optimality conditions of the Karush–Kuhn–Tucker type in Banach spaces under new regularity assumptions. After that, we analyze problems for which the Karush–Kuhn–Tucker form of optimality conditions does not hold and propose necessary and sufficient conditions for those problems. To formulate the optimality conditions, we introduce constraint qualifications for new classes of nonregular nonlinear optimization. The approach of p-regularity used in the paper can be applied to various degenerate nonlinear optimization problems due to its flexibility and generality.  相似文献   

17.
《Optimization》2012,61(3):315-341
In the present paper a connection between cone approximations of sets and generalized differentiability notions will be given. Using both conceptions we present an approach to derive necessary optimality conditions for optimization problems with inequality constraints. Moreover, several constraint qualifications are proposed to get Kuhn-Tucker-type-conditions.  相似文献   

18.
This paper is devoted to the study of nonsmooth generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be locally Lipschitz. We introduce a constraint qualification which is based on the Mordukhovich subdifferential. Then, we derive a Fritz–John type necessary optimality condition. Finally, interrelations between the new and the existing constraint qualifications such as the Mangasarian–Fromovitz, linear independent, and the Slater are investigated.  相似文献   

19.
《Optimization》2012,61(4):351-368
Stability and sensitivity analysis of parametric control problems has recently been elaborated for optimal control problems subject to pure state constraints. This paper illustrates the numerical aspects of sensitivity analysis for a complex practical example: the optimal control of a container crane with a state constraint on the vertical velocity. The multiple shooting method is used to determine a nominal solution satisfying first order necessary conditions. Second order sufficient conditions are checked by showing that an associated Riccati equation has a bounded solution. Sensitivity differentials of optimal solutions an computed with respect to variations in the swing angle  相似文献   

20.

We introduce three new constraint qualifications for nonlinear second order cone programming problems that we call constant rank constraint qualification, relaxed constant rank constraint qualification and constant rank of the subspace component condition. Our development is inspired by the corresponding constraint qualifications for nonlinear programming problems. We provide proofs and examples that show the relations of the three new constraint qualifications with other known constraint qualifications. In particular, the new constraint qualifications neither imply nor are implied by Robinson’s constraint qualification, but they are stronger than Abadie’s constraint qualification. First order necessary optimality conditions are shown to hold under the three new constraint qualifications, whereas the second order necessary conditions hold for two of them, the constant rank constraint qualification and the relaxed constant rank constraint qualification.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号