首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A sensitive issue in numerical calculations for exterior flow problems, e.g.around airfoils, is the treatment of the far field boundary conditions on a computational domain which is bounded. In this paper we investigate this problem for two-dimensional transonic potential flows with subsonic far field flow around airfoil profiles. We take the artificial far field boundary in the subsonic flow region. In the far field we approximate the subsonic potential flow by the Prandtl-Glauert linearization. The latter leads via the Green representation theorem to a boundary integral equation on the far field boundary. This defines a nonlocal boundary condition for the interior ring domain. Our approach leads naturally to a coupled finite element/boundary element method for numerical calculations. It is compared with local boundary conditions. The error analysis for the method is given and we prove convergence provided the solution to the analytic transonic flow problem around the profile exists.

  相似文献   


2.
含开边界二维Stokes问题的Galerkin边界元解法   总被引:1,自引:1,他引:0  
王小军  祝家麟 《计算数学》2010,32(3):305-314
本文推导了含有开边界的二维有限域上Stokes问题的边界积分方程, 得出基于单层位势的第一类间接边界积分方程.对与之等价的边界变分方程用Galerkin边界元求解以得出单层位势的向量密度. 对于含有开边界端点的边界单元,采用特别的插值函数, 以模拟其固有的奇异性.论文用若干数值算例模拟了含有开边界的有限区域上不可压缩粘性流体的绕流.    相似文献   

3.
In this paper, we will propose a boundary element method for solving classical boundary integral equations on complicated surfaces which, possibly, contain a large number of geometric details or even uncertainties in the given data. The (small) size of such details is characterised by a small parameter and the regularity of the solution is expected to be low in such zones on the surface (which we call the wire-basket zones). We will propose the construction of an initial discretisation for such type of problems. Afterwards standard strategies for boundary element discretisations can be applied such as the h, p, and the adaptive hp-version in a straightforward way. For the classical boundary integral equations, we will prove the optimal approximation results of our so-called wire-basket boundary element method and discuss the stability aspects. Then, we construct the panel-clustering and -matrix approximations to the corresponding Galerkin BEM stiffness matrix. The method is shown to have an almost linear complexity with respect to the number of degrees of freedom located on the wire basket.  相似文献   

4.
We consider a symmetric Galerkin boundary element method for the Stokes problem with general boundary conditions including slip conditions. The boundary value problem is reformulated as Steklov–Poincaré boundary integral equation which is then solved by a standard approximation scheme. An essential tool in our approach is the invertibility of the single layer potential which requires the definition of appropriate factor spaces due to the topology of the domain. Here we describe a modified boundary element approach to solve Dirichlet boundary value problems in multiple connected domains. A suitable extension of the standard single layer potential leads to an operator which is elliptic on the original function space. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the basic approximation properties of the hp version of the boundary element method (BEM) in ℝ3. We extend the results on the exponential convergence of the hp version of the boundary element method on geometric meshes from problems in polygonal domains to problems in polyhedral domains. In 2D elliptic boundary value problems the solutions have only corner singularities whereas in 3D problems they contain additional edge and corner-edge singularities. The solutions of the corresponding boundary integral equations inherit those singularities. The detailed investigations in our analysis take care of the various types of those singularities. While edge singularities can be analysed using standard one-dimensional approximation results the corner-edge singularities demand a new analysis. © 1997 by B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

6.
The dual reciprocity boundary element method employing the step by step time integration technique is developed to analyse two-dimensional dynamic crack problems. In this method the equation of motion is expressed in boundary integral form using elastostatic fundamental solutions. In order to transform the domain integral into an equivalent boundary integral, a general radial basis function is used for the derivation of the particular solutions. The dual reciprocity boundary element method is combined with an efficient subregion boundary element method to overcome the difficulty of a singular system of algebraic equations in crack problems. Dynamic stress intensity factors are calculated using the discontinuous quarter-point elements. Several examples are presented to show the formulation details and to demonstrate the computational efficiency of the method.  相似文献   

7.
用双层位势表示的二维Neumann边值问题的边界归化方法,将原始问题归化为新型边界积分-微分方程,由此导出一种新的既能保持原始问题的自伴性,又具有可积弱奇性积分核的边界变分方程.本文将此法推广到三维Helmholtz方程Neumann边值问题,并给出最优能量模误差估计和内部最大模超收敛估计.  相似文献   

8.
Summary.   We combine a primal mixed finite element approach with a Dirichlet-to-Neumann mapping (arising from the boundary integral equation method) to study the weak solvability and Galerkin approximations of a class of linear exterior transmission problems in potential theory. Our results are mainly based on the Babuska-Brezzi theory for variational problems with constraints. We establish the uniqueness of solution for the continuous and discrete formulations, and show that finite element subspac es of Lagrange type satisfy the discrete compatibility conditions. In addition, we provide the error analysis, including polygonal approximations of the domain, and prove strong convergence of the Galerkin solutions. Moreover, under additional regularity assumptions on the solution of the continuous formulation, we obtain the asymptotic rate of convergence O(h). Received August 25, 1998 / Revised version received March 8, 2000 / Published online October 16, 2000  相似文献   

9.
Hanzhi Diao 《PAMM》2017,17(1):757-758
We present the application of the generalised convolution quadrature (gCQ) technique to the time domain boundary element method (BEM) which solves the retarded potential boundary integral equation (RPBIE). Our result allows to employ the multi-stage Runge-Kutta method as the time stepping scheme for the generalised convolution quadrature which is used in the time domain BEM for acoustic problems in either a bounded three-dimensional domain or in its unbounded exterior. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Time-dependent problems modeled by hyperbolic partial differential equations can be reformulated in terms of boundary integral equations and solved via the boundary element method. In this context, the analysis of damping phenomena that occur in many physics and engineering problems is a novelty. Starting from a recently developed energetic space-time weak formulation for the coupling of boundary integral equations and hyperbolic partial differential equations related to wave propagation problems, we consider here an extension for the damped wave equation in layered media. A coupling algorithm is presented, which allows a flexible use of finite element method and boundary element method as local discretization techniques. Stability and convergence, proved by energy arguments, are crucial in guaranteeing accurate solutions for simulations on large time intervals. Several numerical benchmarks, whose numerical results confirm theoretical ones, are illustrated and discussed.  相似文献   

11.
Using the construction procedure of numerical-analytic methods and the boundary element technique, we extend the integral transform method to the solution of nonlinear heat-conduction problems for bodies of nonstandard shape. Translated fromMatematichni Metodi ta Fiziko-mekhanichni Polya, Vol. 39, No. 1, 1996, pp. 42–46.  相似文献   

12.
针对应用自然边界元方法解上半平面的Laplace方程的Neumann边值问题时存在奇异积分的困难,本文提出了Hermite三次样条多小波自然边界元法.Hermite三次样条多小波具有较短的紧支集、很好的稳定性和显式表达式,而且它们在不同层上的导数还是相互正交的.因此,本文将它与自然边界元法相结合,利用小波伽辽金法离散自然边界积分方程,使自然边界积分方程中的强奇异积分化为弱奇异积分,从而降低了问题的复杂性.文中给出的算例表明了该方法的可行性和有效性.  相似文献   

13.
In this paper, we obtain a new system of canonical integral equations for the plane elasticity problem over an exterior circular domain, and give its numerical solution. Coupling with the classical finite element method, it can be used for solving general plane elasticity exterior boundary value problems. This system of highly singular equations is also an exact boundary condition on the artificial boundary. It can be approximated by a series of nonsingular integral boundary conditions.  相似文献   

14.

Galerkin boundary element methods for the solution of novel first kind Steklov-Poincaré and hypersingular operator boundary integral equations with nonlinear perturbations are investigated to solve potential type problems in two- and three-dimensional Lipschitz domains with nonlinear boundary conditions. For the numerical solution of the resulting Newton iterate linear boundary integral equations, we propose practical variants of the Galerkin scheme and give corresponding error estimates. We also discuss the actual implementation process with suitable preconditioners and propose an optimal hybrid solution strategy.

  相似文献   


15.
In this paper, we present a domain decomposition method, based on the general theory of Steklov-Poincaré operators, for a class of linear exterior boundary value problems arising in potential theory and heat conductivity. We first use a Dirichlet-to-Neumann mapping, derived from boundary integral equation methods, to transform the exterior problem into an equivalent mixed boundary value problem on a bounded domain. This domain is decomposed into a finite number of annular subregions, and the Dirichlet data on the interfaces is introduced as the unknown of the associated Steklov-Poincaré problem. This problem is solved with the Richardson method by introducing a Dirichlet-Robin-type preconditioner, which yields an iteration-by-subdomains algorithm well suited for parallel computations. The corresponding analysis for the finite element approximations and some numerical experiments are also provided.  相似文献   

16.
Merab Svanadze 《PAMM》2007,7(1):4060061-4060062
In this paper, the boundary value problems of steady oscillation (vibration) of the linear theory of thermoelasticity for binary mixtures are investigated by means of the boundary integral equation method (potential method). The uniqueness and existence theorems of solutions of the exterior boundary value problems by means potential method and multidimensional singular integral equations are proved. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
多裂纹问题计算分析的本征COD边界积分方程方法   总被引:3,自引:3,他引:0       下载免费PDF全文
针对多裂纹问题,若采用常规的数值求解技术,计算效率较低.为实现多裂纹问题的大规模数值模拟,建立了本征裂纹张开位移(crack opening displacement, COD)边界积分方程及其迭代算法,并引入Eshelby矩阵的定义,将多裂纹分为近场裂纹和远场裂纹来处理裂纹间的相互影响.以采用常单元作为离散单元的快速多极边界元法为参照,对提出的计算模型和迭代算法进行了数值验证.结果表明,本征COD边界积分方程方法在处理多裂纹问题时取得较大的改进,其计算效率显著高于传统的边界元法和快速多极边界元法.  相似文献   

18.
The boundary element spline collocation method is studied for the time-fractional diffusion equation in a bounded two-dimensional domain. We represent the solution as the single layer potential which leads to a Volterra integral equation of the first kind. We discretize the boundary integral equation with the spline collocation method on uniform meshes both in spatial and time variables. In the stability analysis we utilize the Fourier analysis technique developed for anisotropic pseudodifferential equations. We prove that the collocation solution is quasi-optimal under some stability condition for the mesh parameters. We have to assume that the mesh parameter in time satisfies (ht=c h\frac2a)(h_t=c h^{\frac{2}{\alpha}}), where (h) is the spatial mesh parameter.  相似文献   

19.
In this paper, we apply the canonical boundary reduction, suggested by Feng Kang, to the plane elasticity problems, find the expressions of canonical integral equations and Poisson integral formulas in some typical domains. We also give the numerical method for solving these equations together with their convergence and error estimates. Coupling with classical finite element method, this method can be applied to other domains.  相似文献   

20.
In the present paper we consider the numerical solution of shape optimization problems which arise from shape functionals of integral type over a compact region of the unknown shape, especially L 2-tracking type functionals. The underlying state equation is assumed to satisfy a Poisson equation with Dirichlet boundary conditions. We proof that the shape Hessian is not strictly H 1/2-coercive at the optimal domain which implies ill-posedness of the optimization problem under consideration. Since the adjoint state depends directly on the state, we propose a coupling of finite element methods (FEM) and boundary element methods (BEM) to realize an efficient first order shape optimization algorithm. FEM is applied in the compact region while the rest is treated by BEM. The coupling of FEM and BEM essentially retains all the structural and computational advantages of treating the free boundary by boundary integral equations.This research has been carried out when the second author stayed at the Department of Mathematics, Utrecht University, The Netherlands, supported by the EU-IHP project Nonlinear Approximation and Adaptivity: Breaking Complexity in Numerical Modelling and Data Representation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号