首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two W(V)-Mn(III) bimetallic compounds, [Mn(Cl-salmen)(H(2)O)2]{[Mn(5-Clsalmen)(H(2)O)]2[W(CN)8].2H(2)O (1.2H(2)O) [5-Clsalmen = N,N'-(1-methylethylene)bis(5-chlorosalicylideneiminato) dianion], which contains trinuclear Mn(2)W and isolated Mn(III) moieties, and [Mn(3-MeOsalcy)(H(2)O)2]3[W(CN)(8)].2H(2)O (2.2H(2)O) [3-MeOsalcy = N,N'-(trans-1,2-cyclohexanediylethylene)bis(3-methoxysalicylideneiminato) dianion] molecules were prepared in redox processes and characterized using X-ray analysis and magnetic measurements. Compound 1 is composed of the {[Mn(5-Clsalmen)(H(2)O)]2[W(CN)8]}- trimer, in which two CN groups among eight in [W(CN)8](3-) bridge W(5+) and two Mn(3+) ions and the remaining CN ligands are hydrogen-bonded to water molecules or unbound, and the [Mn(Cl-salmen)(H(2)O)2]+ cation. Subsequently, two water molecules of the isolated cation are subject to hydrogen bonds. For 2, there are no covalent bonds among the subunits and six serial stacks of [Mn(3-MeOsalcy)(H(2)O)2]+ units are all hydrogen-bonded. The many hydrogen bonds found in both complexes eventually lead to three-dimensional networks. The magnetic studies for 1 reveal that antiferromagnetic interactions (J = -5.4 cm(-1)) between W(V) and Mn(III) centers within the trimer are transmitted via the bridging CN groups. Intermolecular antiferromagnetic couplings (zJ' = -0.2 cm(-1)) are also observed. The static and dynamic magnetic data of 1 demonstrate the existence of a field-induced spin-flop transition occurring among the clusters and monomeric molecules.  相似文献   

2.
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.  相似文献   

3.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been carried out to investigate the effect of a third polar near-neighbor on one-bond ((1)J(X)(-)(H) and (1h)J(H)(-)(Y)) and two-bond ((2h)J(X)(-)(Y)) spin-spin coupling constants in AH:XH:YH(3) complexes, where A and X are (19)F and (35)Cl and Y is either (15)N or (31)P. The changes in both one- and two-bond spin-spin coupling constants upon trimer formation indicate that the presence of a third molecule promotes proton transfer across the X-H-Y hydrogen bond. The proton-shared character of the X-H-Y hydrogen bond increases in the order XH:YH(3) < ClH:XH:YH(3) < FH:XH:YH(3). This order is also the order of decreasing shielding of the hydrogen-bonded proton and decreasing X-Y distance, and is consistent with the greater hydrogen-bonding ability of HF compared to HCl as the third molecule. For all complexes, the reduced X-H and X-Y spin-spin coupling constants ((1)K(X)(-)(H) and (2h)K(X)(-)(Y)) are positive, consistent with previous studies of complexes in which X and Y are second-period elements in hydrogen-bonded dimers. (1h)K(H)(-)(Y) is, as expected, negative in these complexes which have traditional hydrogen bonds, except for ClH:FH:NH(3) and FH:FH:NH(3). In these two complexes, the F-H-N hydrogen bond has sufficient proton-shared character to induce a change of sign in (1h)K(H)(-)(Y). The effects of trimer formation on spin-spin coupling constants are markedly greater in complexes in which NH(3) rather than PH(3) is the proton acceptor.  相似文献   

4.
A family of coordination complexes has been synthesized, each comprising a ruthenium(II) center ligated by a thiacrown macrocycle, [9]aneS(3), [12]aneS(4), or [14]aneS(4), and a pair of cis-coordinated ligands, niotinamide (nic), isonicotinamide (isonic), or p-cyanobenzamide (cbza), that provide the complexes with peripherally situated amide groups capable of hydrogen bond formation. The complexes [Ru([9]aneS(3))(nic)(2)Cl]PF(6), 1(PF(6)); [Ru([9]aneS(3)) (isonic)(2)Cl]PF(6), 2(PF(6)); [Ru([12]aneS(4))(nic)(2)](PF(6))(2), 3(PF(6))(2); [Ru([12]aneS(4))(isonic)(2)](PF(6))(2), 4(PF(6))(2); [Ru([12]aneS(4)) (cbza)(2)](PF(6))(2), 5(PF(6))(2); [Ru([14]aneS(4))(nic)(2)](PF(6))(2), 6(PF(6))(2); [Ru([14]aneS(4))(isonic)(2)](PF(6))(2), 7(PF(6))(2); and [Ru([14]aneS(4))(cbza)(2)](PF(6))(2), 8(PF(6))(2) have been characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV/visible spectroscopy shows that each complex exhibits an intense high-energy band (230-255 nm) assigned to a pi-pi* transition and a lower energy band (297-355 nm) assigned to metal-to-ligand charge-transfer transitions. Electrochemical studies indicate good reversibility for the oxidations of complexes with nic and isonic ligands (|I(a)/I(c)| = 1; DeltaEp < 100 mV), In contrast, complexes 5 and 8, which incorporate cbza ligands, display oxidations that are not fully electrochemically reversible (|I(a)/I(c)| = 1, DeltaEp > or = 100 mV). Metal-based oxidation couples between 1.32 and 1.93 V versus Ag/AgCl can be rationalized in term of the acceptor capabilities of the thiacrown ligands and the amide-bearing ligands, as well as the pi-donor capacity of the chloride ligands in compounds 1 and 2. The potential to use these electroactive metal complexes as building blocks for hydrogen-bonded crystalline materials has been explored. Crystal structures of compounds 1(PF(6)).H(2)O, 1(BF(4)).2H(2)O, 2(PF(6)), 3(PF(6))(2), 6(PF(6))(2)CH(3)NO(2), and 8(PF(6))(2) are reported. Four of the six form amide-amide N-H...O hydrogen bonds leading to networks constructed from amide C(4) chains or tapes containing R(2)(2) (8) hydrogen-bonded rings. The other two, 2(PF(6)) and 8(PF(6)), form networks linked through amide-anion N-H...F hydrogen bonds. The role of counterions and solvent in interrupting or augmenting direct amide-amide network propagation is explored, and the systematic relationship between the hydrogen-bonded networks formed across the series of structures is presented, showing the relationship between chain and tape arrangements and the progression from 1D to 2D networks. The scope for future systematic development of electroactive tectons into network materials is discussed.  相似文献   

5.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

6.
Infrared spectroscopy of large-sized protonated methanol clusters, H(+)(MeOH)(n) (n = 4-15), was carried out in the OH stretch region to characterize the development of the hydrogen bond network with the cluster size, n. The band intensity of the free OH stretching mode decreased with n, and the band finally disappeared at n = 7. On the other hand, the broad absorption band due to hydrogen-bonded OH stretches exhibited a remarkable shift with the cluster size, and it finally converged on 3300 cm(-1) for n >/= approximately 10. The size dependence of the infrared spectra was morphologically interpreted in terms of the formation of the bicyclic hydrogen-bonded structure of the clusters.  相似文献   

7.
Two new mononuclear Ca(II) complexes with aryl dihydrogen phosphate ligands having two strategically oriented bulky amide groups, 2,6-(Ph3CCONH)2C6H3OPO3H2 (1), including one with a phosphate monoanion, (NMe4)[CaII[O2P(OH)OC6H3-2,6-(NHCOCPh3)2]3(NCMe)3] (3), and one with a phosphate dianion, [CaII[O3POC6H3-2,6-(NHCOCPh3)2](H2O)3(MeOH)2] (4). Both are analogues for the NH...O hydrogen bonds in the active site of Ca(II)-containing phosphotransferase. Crystallographic studies of these Ca(II) complexes revealed that the amide NHs are directed to uncoordinated O atoms of the phosphates, and the IR and 1H NMR spectra indicate that strong NH...O hydrogen bonds are formed only in the phosphate dianion state. The ligand exchange reaction of 3 with a non-hydrogen-bonded phosphate ligand shows that the NH...O hydrogen bonds prevent the Ca-O bond from dissociation. A scatter plot analysis comparing the distance of a Ca-O bond with the Ca-O-P angle, the Fourier density analysis, and DFT calculations reveal that a partial degree of covalency in the Ca-O(phosphate) bonds is present.  相似文献   

8.
9,10-Phenanthrenequinone (PQ) and 1,10-phenanthroline-5,6-dione (PTQ) form 1:1 and 2:1 complexes with metal ions (M (n+)=Sc (3+), Y (3+), Mg (2+), and Ca (2+)) in acetonitrile (MeCN), respectively. The binding constants of PQ--M (n+) complexes vary depending on either the Lewis acidity or ion radius of metal ions. The one-electron reduced species (PTQ(-)) forms 1:1 complexes with M (n+), and PQ(-) also forms 1:1 complexes with Sc(3+), Mg(2+), and Ca(2+), whereas PQ(-) forms 1:2 complexes with Y(3+) and La(3+), as indicated by electron spin resonance (ESR) measurements. On the other hand, semiquinone radical anions (Q(-) and NQ(-)) derived from p-benzoquinone (Q) and 1,4-naphthoquinone (NQ) form Sc(3+)-bridged pi-dimer radical anion complexes, Q(-)--(Sc(3+))(n)--Q and NQ(-)--(Sc(3+))(n)-NQ (n=2 and 3), respectively. The one-electron reduction potentials of quinones (PQ, PTQ, and Q) are largely positively shifted in the presence of M (n+). The rate constant of electron transfer from CoTPP (TPP(2-)=dianion of tetraphenylporphyrin) to PQ increases with increasing the concentration of Sc(3+) to reach a constant value, when all PQ molecules form the 1:1 complex with Sc(3+). Rates of electron transfer from 10,10'-dimethyl-9,9'-biacridine [(AcrH)(2)] to PTQ are also accelerated significantly by the presence of Sc(3+), Y(3+), and Mg(2+), exhibiting a first-order dependence with respect to concentrations of metal ions. In contrast to the case of o-quinones, unusually high kinetic orders are observed for rates of Sc(3+)-promoted electron transfer from tris(2-phenylpyridine)iridium(III) [Ir(ppy)(3)] to p-quinones (Q): second-order dependence on concentration of Q, and second- and third-order dependence on concentration of Sc(3+) due to formation of highly ordered radical anion complexes, Q()--(Sc(3+))(n)--Q (n=2 and 3).  相似文献   

9.
The reactions of phenyl(2-pyridyl)ketone oxime (py)C(ph)NOH, with nickel(II) sulfate hexahydrate under reflux, in the absence of an external base, have been investigated. The reaction of NiSO(4).6H(2)O with two equivalents of (py)C(ph)NOH in H(2)O/MeOH leads to the dinuclear complex [Ni(2)(SO(4))(2){(py)C(ph)NOH}(4)] (1), while an excess of the organic ligand affords the 1:3 cationic complex [Ni{(py)C(ph)NOH}(3)](SO(4)) (2). Compound 1 is transformed into 2 by a reaction with an excess of ligand in refluxing H(2)O/MeOH. Reactions of 1 and 2 with a limited amount of LiOH give the known cluster [Ni(6)(SO(4))(4)(OH){(py)C(ph)NO}(3){(py)C(ph)NOH}(3)(H(2)O)(3)]. The structures of 1 and 2 have been determined by single-crystal X-ray crystallography. In both complexes the organic ligand chelates through its 2-pyridyl and oxime nitrogen atoms. The metal centers of 1 are bridged by two eta(1):eta(1):mu sulfato ligands; each metal ion has the cis-cis-trans deposition of the coordinated sulfato oxygen, pyridyl nitrogen and oxime nitrogen atoms, respectively. The cation of 2 is the fac isomer considering the positions of the coordinated pyridyl and oxime nitrogen atoms. The crystal structures of both complexes are stabilized by hydrogen bonds. Compounds 1 and 2 join a small family of structurally characterized metal complexes containing the neutral or anionic forms of phenyl(2-pyridyl)ketone oxime as ligands. The IR spectra of the two complexes are discussed in terms of the nature of bonding and their structures. From the vibrational spectroscopy viewpoint, the SO(4)(2-) groups in 1 and 2 appear to have lower symmetries compared with those deduced from X-ray crystallography; this is attributed to the participation of sulfates in hydrogen bonding interactions.  相似文献   

10.
The reactions of CoX(2) (X = Cl(-), Br(-), I(-) and ClO(4)(-)) with the tripodal polypyridine N(4)O(2)-type ligand bearing pivalamide groups, bis(6-(pivalamide-2-pyridyl)methyl)(2-pyridylmethyl)amine ligand (H(2)BPPA), afforded two types of Co(II) complexes as follows. One type is purple-coloured Co(II) complexes, [CoCl(2)(H(2)BPPA)] (1(Cl)) and [CoBr(2)(H(2)BPPA)] (1(Br)) which were prepared when X = Cl(-) and Br(-), respectively. The other type is pale pink-coloured Co(II) complexes, [Co(MeOH)(H(2)BPPA)](ClO(4)(-))(2) (2·(ClO(4)(-))(2)) and [Co(MeCN)(H(2)BPPA)](I(-))(2) (2·(I(-))(2)), which were obtained when X = I(-) and ClO(4)(-), respectively. From the reaction of 1(Cl) and NaN(3), a purple-coloured complex, [Co(N(3))(2)(H(2)BPPA)] (1(azide)), was obtained. These Co(II) complexes were characterized by X-ray structural analysis, IR and reflectance spectroscopies, and magnetic susceptibility measurements. All these Co(II) complexes were shown to be in a d(7) high-spin state based on magnetic susceptibility measurements. The former Co(II) complexes revealed a six-coordinate octahedron with one amine nitrogen, three pyridyl nitrogens, and two counter anions, and one coordinated anion, Cl(-), Br(-) and N(3)(-), forming intramolecular hydrogen bonds with two pivalamide N-H groups. On the other hand, the latter Co(II) complexes showed a seven-coordinate face-capped octahedron with one amine nitrogen, three pyridyl nitrogens, two pivalamide carbonyl oxygens and MeCN or MeOH. In these structures, intramolecular hydrogen bonding interaction was not observed, and the metal ion was coordinated by the pivalamide carbonyl oxygens and solvent molecule instead of the counter anions. The difference in coordination geometries might be attributable to the coordination ability and ionic radii of the counteranions; smaller strongly binding anions such as Cl(-), Br(-) and N(3)(-) gave the former complexes, whereas bulky weakly binding anions such as I(-) and ClO(4)(-) afforded the latter ones. In order to demonstrate this hypothesis, the small stronger coordinating ligand, azide, was added to complexes 2·(ClO(4)(-))(2) to obtain the dinuclear cobalt(II) complex in which two six-coordinate octahedral cobalt(II) species were bridged with azide, 3·(ClO(4)(-)). Also, the abstraction reaction of halogen anions from complexes 1(Cl) by AgSbF(6) gave a pale pink Co(II) complex assignable to 2·(SbF(6)(-))(2).  相似文献   

11.
The preparation, structural characterization and magnetic properties of three solvent adducts of VOCl(2), trans-VOCl(2)(THF)(2)(H(2)O) (1), trans-VOCl(2)(H(2)O)(2).2Et(2)O (2) and cis-VOCl(2)(MeOH)(3) (3) are described. In these solids, hydrogen bonding among the inorganic complexes is the critical determinant of the formation of extended magnetic networks. Compound forms one-dimensional double chains where alternating monomers from the two branches of the chain are hydrogen bonded via the V-Cl ... H-O-V network (with an axial water molecule and equatorial chloride ions). Magnetic studies indicate no interaction among the vanadyl centers. The paramagnetism of 1 is consistent with the extension of the network from the hydrogen donor site of the axial water, which is orthogonal to the d(xy) magnetic orbital. Compound 2 forms one-dimensional chains with water molecules of adjacent monomers held together by hydrogen bonds to ether molecules (V-O-H ... O(ether) ... H -O-V). The chain network radiates only through the equatorial plane of the complex where the water molecules are located. The presence of the intervening solvent molecule between hydrogen bonds of the primary coordination sphere magnetically insulates metal centers and compound is also a simple paramagnet. Removal of the solvent turns on the magnetic interaction and neighboring spin centers couple antiferromagnetically. Compound 3 forms a layered structure via V-Cl ... H-O-V hydrogen bonding, where all the hydrogen donor sites participate in the formation of the network. The vanadyl spin centers, at distances of 5.5 and 6.5 A from each other, couple antiferromagnetically (J/k=-0.7 K). Thus, magnetic coupling among metal centers is achieved when the hydrogen bond network directly radiates from the coordination plane containing the magnetic orbital. These results further support the utility of hydrogen bond as a viable design element in the construction of low dimensional, magnetic solids.  相似文献   

12.
Very short C-H...O, N-H...O, and O-H...O hydrogen bonds have been generated utilizing the cyclic phosphate [CH2(6-t-Bu-4-Me-C6H2O)2]P(O)OH (1). X-ray structures of (i) 1 (unsolvated, two polymorphs), 1...EtOH, and 1...MeOH, (ii) [imidazolium](+)[CH2(6-t-Bu-4-Me-C6H2O)2PO2](-)...MeOH [2], (iii) [HNC5H4-N=N-C5H4NH](2+)[(CH2(6-t-Bu-4-Me-C6H2O)2PO2)2](2-)...4CH3CN...H2O [3], (v) [K, 18-crown-6](+)[(CH2(6-t-Bu-4-Me-C6H2O)2P(O)OH)(CH2(6-t-Bu-4-Me-C6H2O)2PO2)](-)...2THF [4], (vi) 1...cytosine...MeOH [5], (vii) 1...adenine...1/2MeOH [6], and (viii) 1...S-(-)-proline [7] have been determined. The phosphate 1 in both its forms is a hydrogen-bonded dimer with a short O-H...O distance of 2.481(2) [triclinic form] or 2.507(3) A [monoclinic form]. Compound 2 has a helical structure with a very short C-H...O hydrogen bond involving an imidazolyl C-H and methanol in addition to N-H...O hydrogen bonds. A helical motif is also seen in 5. In 3, an extremely short N-H...O hydrogen bond [N...O 2.558(4) A] is observed. Compounds 6 and 7 also exhibit short N-H...O hydrogen bonds. In 1...EtOH, a 12-membered hydrogen-bonded ring motif, with one of the shortest known O-H...O hydrogen bonds [O...O 2.368(4) A], is present. 1...MeOH is a similar dimer with a very short O(-H)...O bond [2.429(3) A]. In 4, the deprotonated phosphate (anion) and the parent acid are held together by a hydrogen bond on one side and a coordinate/covalent bond to potassium on the other; the O-H...O bond is symmetrical and very strong [O...O 2.397(3) A].  相似文献   

13.
Hydration of the atomic oxygen radical anion is studied with computational electronic structure methods, considering (O(-))(H(2)O)(n) clusters and related proton-transferred (OH(-))(OH)(H(2)O)(n)(-)(1) clusters having n = 1-5. A total of 67 distinct local-minimum structures having various interesting hydrogen bonding motifs are obtained and analyzed. On the basis of the most stable form of each type, (O(-))(H(2)O)(n)) clusters are energetically favored, although for n > or = 3, there is considerable overlap in energy between other members of the (O(-))(H(2)O)(n) family and various members of the (OH(-))(OH)(H(2)O)(n)(-)(1) family. In the lower-energy (O(-))(H(2)O)(n) clusters, the hydrogen bonding arrangement about the oxygen anion center tends to be planar, leaving the oxygen anion p-like orbital containing the unpaired electron uninvolved in hydrogen bonding with any water molecule. In (OH(-))(OH)(H(2)O)(n)(-)(1) clusters, on the other hand, nonplanar arrangements are the rule about the anionic oxygen center that accepts hydrogen bonds. No instances are found of OH(-) acting as a hydrogen bond donor. Those OH bonds that form hydrogen bonds to an anionic O(-) or OH(-) center are significantly stretched from their equilibrium value in isolated water or hydroxyl. A quantitative inverse correlation is established for all hydrogen bonds between the amount of the OH bond stretch and the distance to the other oxygen involved in the hydrogen bond.  相似文献   

14.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

15.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded systems of nicotinamide (NA(Z) and NA(E)) with dimethyl sulfoxide (DMSO) have been predicted using ab initio SCF/6-31G(d,p) and DFT (BLYP/6-311++G(d,p)) calculations. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between nicotinamide (NA(Z) and NA(E)) and DMSO leads to large red shifts of the stretching vibrations for the hydrogen-bonded N-H bonds of nicotinamide and very strong increase in their IR intensity. The results from the BLYP/6-311++G(d,p) calculations show that the predicted red shifts of the nu(s)(NH) and nu(as)(NH) vibrations for the complex NA(E)-DMSO (1:2) (Deltanu(as)(NH)=-186 cm(-1) and Deltanu(s)(NH)=-198 cm(-1)) are in better agreement with the experimentally measured. The magnitudes of the wavenumber shifts are indicative of strong NH...O hydrogen-bonded interactions in both complexes. The calculations predict an increase of the IR intensity of nu(s)(NH) and nu(as)(NH) vibrations in the complexes up to 14 times. Having in mind that in more cases the predicted changes in the vibrational characteristics for the complexes studied are very near, it could be concluded that both conformers of nicotinamide, Z-conformer and E-conformer, are present in the solution forming the hydrogen-bonded complexes with DMSO.  相似文献   

16.
A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ? solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ? solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ? solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such a two-step MeOH adsorption on 2 depends on the temperature, attributed to the small free-energy difference (ΔF(host)) between the two guest-free forms, wide and narrow pores.  相似文献   

17.
Several new first-row transition-metal complexes have been synthesised by combining the polynitrile dianion HCTMCP(2-) (hexacyanotrimethylenecyclopropandiide) with neutral, chelating co-ligands; 2,2'-bipyridine, 1,10-phenanthroline and 3-(2-pyridyl)pyrazole. The products cover a remarkable range of species including mononuclear complexes, dimers, charge-separated species and coordination polymers. Complexes containing 2,2'-bipyridine take the form [Mn(2,2'-bipy)(2)(HCTMCP)](2)·2MeOH (1) or [M(2,2'-bipy)(3)](HCTMCP) (2Fe and 2Co) which are dimeric and charge-separated products, respectively. The products obtained using 1,10-phenanthroline were the discrete complex [Co(HCTMCP)(1,10-phen)(2)(H(2)O)]·H(2)O·MeCN (3) and the 1D coordination polymer [Mn(HCTMCP)(1,10-phen)(H(2)O)(MeOH)] (4). Complexes using the 3-(2-pyridyl)pyrazole co-ligand (pypzH) form similar 1D complexes to 4, namely [Mn(pypzH)(HCTMCP)(MeOH)(H(2)O)] (5) and [M(pypzH)(HCTMCP)(MeOH)(2)] (6Co and 6Fe), albeit with different hydrogen-bonding motifs between the chains. The polymeric HCTMCP complexes show weak to zero antiferromagnetic coupling between metal centres and thus no long-range ordering.  相似文献   

18.
The electronic structure and metal-metal bonding in the classic d(7)d(7) tetra-bridged lantern dimer [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) has been investigated by performing quasi-relativistic Xalpha-SW molecular orbital calculations on the analogous formate-bridged complex. From the calculations, the highest occupied and lowest unoccupied metal-based levels are delta(Pt(2)) and sigma(Pt(2)), respectively, indicating a metal-metal single bond analogous to the isoelectronic Rh(II) complex. The energetic ordering of the main metal-metal bonding levels is, however, quite different from that found for the Rh(II) complex, and the upper metal-metal bonding and antibonding levels have significantly more ligand character. As found for the related complex [W(2)(O(2)CH)(4)], the inclusion of relativistic effects leads to a further strengthening of the metal-metal sigma bond as a result of the increased involvement of the higher-lying platinum 6s orbital. The low-temperature absorption spectrum of [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) is assigned on the basis of Xalpha-SW calculated transition energies and oscillator strengths. Unlike the analogous Rh(II) spectrum, the visible and near-UV absorption spectrum is dominated by charge transfer (CT) transitions. The weak, visible bands at 27 500 and 31 500 cm(-)(1) are assigned to Ow --> sigma(Pt(2)) and OAc --> sigma(Pt(2)) CT transitions, respectively, although the donor orbital in the latter transition has around 25% pi(Pt(2)) character. The intense near-UV band around 37 500 cm(-)(1) displays the typical lower energy shift as the axial substituents are changed from H(2)O to Cl and Br, indicative of significant charge transfer character. From the calculated oscillator strengths, a number of transitions, mostly OAc --> sigma(Pt-O) CT in nature, are predicted to contribute to this band, including the metal-based sigma(Pt(2)) --> sigma(Pt(2)) transition. The close similarity in the absorption spectra of the CH(3)COO(-), SO(4)(2)(-), and HPO(4)(2)(-) bridged Pt(III) complexes suggests that analogous spectral assignments should apply to [Pt(2)(SO(4))(4)(H(2)O)(2)](2)(-) and [Pt(2)(HPO(4))(4)(H(2)O)(2)](2)(-). Consequently, the anomalous MCD spectra reported recently for the intense near-UV band in the SO(4)(2)(-) and HPO(4)(2)(-) bridged Pt(III) complexes can be rationalized on the basis of contributions from either SO(4) --> sigma(Pt-O) or HPO(4) --> sigma(Pt-O) CT transitions. The electronic absorption spectrum of [Rh(2)(O(2)CCH(3))(4)(H(2)O)(2)] has been re-examined on the basis of Xalpha-SW calculated transition energies and oscillator strengths. The intense UV band at approximately 45 000 cm(-)(1) is predicted to arise from several excitations, both metal-centered and CT in origin. The lower energy shoulder at approximately 40 000 cm(-)(1) is largely attributed to the metal-based sigma(Rh(2)) --> sigma(Rh(2)) transition.  相似文献   

19.
The acetylacetonate complexes [Ni(2)L(1)(acac)(MeOH)] x H(2)O, 1 x H(2)O and [Ni(2)L(3)(acac)(MeOH)] x 1.5H(2)O, 2 x 1.5H(2)O (H(3)L(1) = (2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine and H(3)L(3) = (2-(5-bromo-2-hydroxyphenyl)-1,3-bis[4-(5-bromo-2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) were prepared and fully characterised. Their crystal structures show that they are dinuclear complexes, extended into chains by hydrogen bond interactions. These compounds were used as starting materials for the isolation of the corresponding [Ni(2)HL(x)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x n MeOH and [Ni(2)HL(x)(O(2)CCH(2)CO(2))(H(2)O)]x nH(2)O dicarboxylate complexes (x = 1, 3; n = 1-3). The crystal structures of [Ni(2)HL(1)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x MeOH, 3 x MeOH, [Ni(2)HL(3)(o-O(2)CC(6)H(4)CO(2))(H(2)O)] x 3 MeOH, 4 x 3 MeOH and [Ni(2)HL(1)(O(2)CCH(2)CO(2))(H(2)O)] x 2.5H(2)O x 0.25 MeOH x MeCN, 5 x 2.5H(2)O x 0.25 MeOH x MeCN, were solved. Complexes 3-5 show dinuclear [Ni(2)HL(x)(dicarboxylate)(H(2)O)] units, expanded through hydrogen bonds that involve carboxylate and water ligands, as well as solvate molecules. The variable temperature magnetic susceptibilities of all the complexes show an intramolecular ferromagnetic coupling between the Ni(II) ions, which is attempted to be rationalized by comparison with previous results and in the light of molecular orbital treatment. Magnetisation measurements are in accord with a S = 2 ground state in all cases.  相似文献   

20.
Ab initio equation-of-motion coupled cluster singles and doubles calculations have been carried out on a variety of 2:1 FH:NH(3) complexes (F(b)H(b):F(a)H(a):NH(3)) to investigate the effects of structural changes on one- and two-bond spin-spin coupling constants across F(a)-H(a)-N and F(b)-H(b)-F(a) hydrogen bonds and to provide insight into experimentally measured coupling constants for 2:1 FH:collidine (2:1 FH:2,4,6-trimethylpyridine) complexes. Coupling constants have been computed for 2:1 FH:NH(3) equilibrium structures and proton-transferred perpendicular and open structures at 2:1 FH:NH(3), FH:pyridine, and FH:collidine geometries. (2h)J(Fa)(-)(N), (1)J(Fa)(-)(Ha), and (1h)J(Ha)(-)(N) exhibit expected dependencies on distances, angles, and the nature of the nitrogen base. In contrast, one- and two-bond coupling constants associated with the F(b)-H(b)-F(a) hydrogen bond, particularly (2h)J(F)()b(-)(F)()a, vary significantly depending on the F-F distance, the orientation of the hydrogen-bonded pair, and the nature of the complex (HF dimer versus the anion FHF(-)). The structure of the 2:1 FH:collidine complex proposed on the basis of experimentally measured coupling constants is supported by the computed coupling constants. This study of the structures of open proton-transferred 2:1 FH:NH(3), FH:pyridine, and FH:collidine complexes and the coupling constants computed for 2:1 FH:NH(3) complexes at these geometries provides insight into the role of the solvent in enhancing proton transfer across both N-H(a)-F(a) and F(b)-H(b)-F(a) hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号