首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
This paper presents Constraint Programming as a natural formalism for modelling problems, and as a flexible platform for solving them. CP has a range of techniques for handling constraints including several forms of propagation and tailored algorithms for global constraints. It also allows linear programming to be combined with propagation and novel and varied search techniques which can be easily expressed in CP. The paper describes how CP can be used to exploit linear programming within different kinds of hybrid algorithm. In particular it can enhance techniques such as Lagrangian relaxation, Benders decomposition and column generation.  相似文献   

2.
Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.   相似文献   

3.
Goal Programming with fractional objectives can be reduced to mathematical programming with a linear objective under linear and quadratic constraints, thus optimal solutions can be obtained by using existing Global Optimization techniques. However, only heuristic procedures are suggested in the literature on the field. In this note we explore the practical applicability of a recent algorithm for nonconvex quadratic programming with quadratic constraints for this problem. Encouraging computational experiences for randomly generated instances with up to 14 fractional objectives are presented.  相似文献   

4.
A scheduling problem with piecewise linear (PL) optimization extends conventional scheduling by imposing a conjunction of combinatorial PL constraints involving the objective function variables. To solve this problem, this paper presents a hybrid algorithm where Constraint Programming (CP) search is supported and driven by a (integer) linear programming solver running on a well-controlled subproblem which is dynamically tightened. The paper discusses and compares different ways of decomposing the problem constraints between the CP search and the solver. We show how the subproblem structure and the piecewise linearity are exploited by the search.  相似文献   

5.
A Finite Algorithm for Global Minimization of Separable Concave Programs   总被引:3,自引:0,他引:3  
Researchers first examined the problem of separable concave programming more than thirty years ago, making it one of the earliest branches of nonlinear programming to be explored. This paper proposes a new algorithm that finds the exact global minimum of this problem in a finite number of iterations. In addition to proving that our algorithm terminates finitely, the paper extends a guarantee of finiteness to all branch-and-bound algorithms for concave programming that (1) partition exhaustively using rectangular subdivisions and (2) branch on the incumbent solution when possible. The algorithm uses domain reduction techniques to accelerate convergence; it solves problems with as many as 100 nonlinear variables, 400 linear variables and 50 constraints in about five minutes on an IBM RS/6000 Power PC. An industrial application with 152 nonlinear variables, 593 linear variables, and 417 constraints is also solved in about ten minutes.  相似文献   

6.
A Hybrid Approach to Scheduling with Earliness and Tardiness Costs   总被引:9,自引:0,他引:9  
A hybrid technique using constraint programming and linear programming is applied to the problem of scheduling with earliness and tardiness costs. The linear model maintains a set of relaxed optimal start times which are used to guide the constraint programming search heuristic. In addition, the constraint programming problem model employs the strong constraint propagation techniques responsible for many of the advances in constraint programming for scheduling in the past few years. Empirical results validate our approach and show, in particular, that creating and solving a subproblem containing only the activities with direct impact on the cost function and then using this solution in the main search, significantly increases the number of problems that can be solved to optimality while significantly decreasing the search time.  相似文献   

7.
This paper provides an approximating programming technique to solve the multi-product newsvendor model in which product demands are independent and stocking quantities are subject to two or more ex-ante linear contraints, such as budget or volume constraints. Previous research has attempted to solve this problem with Lagrange relaxation techniques or by limiting the distribution of demand. However, by taking advantage of the separable nature of the problem, a close approximation of the optimal solution can be found using convex separable programming for any demand distribution in the traditional newsvendor model and extensions. Sensitivity analysis of the linear program provides managerial insight into the effects of parameters of the problem on the optimal solution and future decisions.  相似文献   

8.
An interval-parameter fuzzy linear programming method (IFMOLP) is proposed in this study for multiple objective decision-making under uncertainty. As a hybrid of interval-parameter and fuzzy methodologies, the IFMOLP incorporates interval-parameter linear programming and fuzzy multiobjective programming approaches to form an integrated optimization system. The method inherits advantages of interval-parameter programming, and allows uncertainties and decision-makers’ aspirations to be effectively communicated into its programming processes and resulting solutions. Membership functions for both objectives and constraints are formulated to reflect uncertainties in different system components and their interrelationships. An interactive solution procedure has been developed based on solution approaches of the interval-parameter and fuzzy programming techniques, plus necessary measures for handling the multiobjective feature. A didactic example is provided in the paper to illustrate the detailed solution process. Possibilities of further improvements by seeking Pareto optimum and incorporating flexible preference within constraints are also discussed.  相似文献   

9.
Whereas CP methods are strong with respect to the detection of local infeasibilities, OR approaches have powerful optimization abilities that ground on tight global bounds on the objective. An integration of propagation ideas from CP and Lagrangian relaxation techniques from OR combines the merits of both approaches. We introduce a general way of how linear optimization constraints can strengthen their propagation abilities via Lagrangian relaxation. The method is evaluated on a set of benchmark problems stemming from a multimedia application. The experiments show the superiority of the combined method compared with a pure OR approach and an algorithm based on two independent optimization constraints.  相似文献   

10.
本通过辅助规划和Lagrange对偶,把带等式和不等式约束的极大极小问题转化为带线性约束的凸规划问题,给出了一个信赖域方法,并证明了方法的可行性。  相似文献   

11.
The paper considers solving of linear programming problems with p-order conic constraints that are related to a certain class of stochastic optimization models with risk objective or constraints. The proposed approach is based on construction of polyhedral approximations for p-order cones, and then invoking a Benders decomposition scheme that allows for efficient solving of the approximating problems. The conducted case study of portfolio optimization with p-order conic constraints demonstrates that the developed computational techniques compare favorably against a number of benchmark methods, including second-order conic programming methods.  相似文献   

12.
Optimal Security Liquidation Algorithms   总被引:1,自引:0,他引:1  
This paper develops trading strategies for liquidation of a financial security, which maximize the expected return. The problem is formulated as a stochastic programming problem that utilizes the scenario representation of possible returns. Two cases are considered, a case with no constraint on risk and a case when the risk of losses associated with trading strategy is constrained by Conditional Value-at-Risk (CVaR) measure. In the first case, two algorithms are proposed; one is based on linear programming techniques, and the other uses dynamic programming to solve the formulated stochastic program. The third proposed algorithm is obtained by adding the risk constraints to the linear program. The algorithms provide path-dependent strategies, i.e., the fraction of security sold depends upon price sample-path of the security up to the current moment. The performance of the considered approaches is tested using a set of historical sample-paths of prices.  相似文献   

13.
The simplex method for linear programming can be extended to permit the minimization of any convex separable piecewise-linear objective, subject to linear constraints. Part I of this paper has developed a general and direct simplex algorithm for piecewise-linear programming, under convenient assumptions that guarantee a finite number of basic solutions, existence of basic feasible solutions, and nondegeneracy of all such solutions. Part II now shows how these assumptions can be weakened so that they pose no obstacle to effective use of the piecewise-linear simplex algorithm. The theory of piecewise-linear programming is thereby extended, and numerous features of linear programming are generalized or are seen in a new light. An analysis of the algorithm's computational requirements and a survey of applications will be presented in Part III.This research has been supported in part by the National Science Foundation under grant DMS-8217261.  相似文献   

14.
In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.  相似文献   

15.
In this paper, compromise programming (CP) is viewed as the maximization of the decision maker’s additive utility function (whose arguments are the criteria under consideration) subject to an efficient frontier of criteria and the non-negativity constraints in a deterministic context. This is equivalent to minimizing the difference (‘distance’) between utility at the ideal point and utility at a frontier point on the criteria map, a meaningful statement as minimizing distances to the utopia is the ethos of compromise programming. By Taylor expansion of utility around the ideal point, the distance to the utopia becomes the weighted sum of linear and quadratic CP distances, which gives us the composite metric. While the linear terms pursue achievement, the quadratic ones pursue balanced (non-corner) solutions. Because some decision makers fear imbalance while others prefer large achievements even to the detriment of balance, the paper defines an aversion to imbalance ratio, so that the composite linear-quadratic metric should conform to this ratio depending on the decision maker’s preferences and attitudes. As the problem of selecting an appropriate metric is an ongoing issue in CP, the paper is a contribution to theory and practice. For the sole purpose of suggesting industrial applications, an example is developed.  相似文献   

16.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

17.
The linear multiplicative programming problem minimizes a product of two (positive) variables subject to linear inequality constraints. In this paper, we show NP-hardness of linear multiplicative programming problems and related problems.  相似文献   

18.
On the mixed integer signomial programming problems   总被引:1,自引:0,他引:1  
This paper proposes an approximate method to solve the mixed integer signomial programming problem, for which the objective function and the constraints may contain product terms with exponents and decision variables, which could be continuous or integral. A linear programming relaxation is derived for the problem based on piecewise linearization techniques, which first convert a signomial term into the sum of absolute terms; these absolute terms are then linearized by linearization strategies. In addition, a novel approach is included for solving integer and undefined problems in the logarithmic piecewise technique, which leads to more usefulness of the proposed method. The proposed method could reach a solution as close as possible to the global optimum.  相似文献   

19.
In engineering plasticity, the behavior of a structure (e.g., a frame or truss) under a variety of loading conditions is studied. Two primary types of analysis are generally conducted. Limit analysis determines the rigid plastic collapse load for a structure and can be formulated as a linear program (LP). Deformation analysis at plastic collapse can be formulated as a quadratic program (QP). The constraints of the two optimization problems are closely related. This paper presents a specialization of the projection method for linear programming for the limit-load analysis problem. The algorithm takes advantage of the relationship between the LP constraints and QP constraints to provide advantageous starting data for the projection method applied to the QP problem. An important feature of the method is that it avoids problems of apparent infeasibility due to roundoff errors. Experimental results are given for two medium-sized problems.This work was supported by the National Research Council of Canada under Research Grant No. A8189.  相似文献   

20.
Cost minimization multi-product production problems with static production resource usage and internal product flow requirements have been solved by linear programming (LP) with input/output analysis. If the problem is complicated by interval resource estimates, interval linear programming (ILP) can be used. The solution of realistic problems by the above method is cumbersome. This paper suggests that linear goal programming (LGP) can be used to model a multi-product production system. LGP's unique modeling capabilities are used to solve a production planning problem with variable resource parameters. Input/output analysis is used to determine the technological coefficients for the goal constraints and is also used to derive an information sub-model that is used to reduce the number of variable resource goal constraints. Preliminary findings suggest that the LGP approach is more cost-efficient (in terms of CPU time) and in addition provides valuable information for aggregate planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号