首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anisotropic yield criterion with a general representation was suggested. The yield criterion was derived from the use of the invariants of the stress tensor, similar in constructing an isotropic yield criterion, but which contains a “three-yield-system hypothesis” specifying the state of anisotropy. When applied to rolled sheet metals, such as high strength steels and aluminum alloys, the criterion can be treated in an analytical form to facilitate analyses of engineering problems under a general triaxial stress state. For this specified form, anisotropic properties of the predicted yield surface were characterized by seven experimental results obtained from three standard uniaxial-tension tests and one equibiaxial-tension test. When the applied material becomes isotropic it is transformed back to the form of the von-Mises’s criterion. Since the convexity of the yield criterion was proven in its general type, the characterized criterion is valid as a plastic potential in the implementation of finite element programs. It was shown, in full agreement with experimental data, that the accuracy of predicted yield surface was similar to that of predicted by the polycrystal model. Considering the equibiaxial-tension data, in general, may be not available from material supplies, a formulated relation covered variables of the equibiaxial tension and uniaxial tension was proposed. The relation can be used to calculate the equibiaxial-tension yield stress from the experimental data in uniaxial tensions. Several calculated results showed very close to the experimental results.  相似文献   

2.
李婧宇  朱飞鹏  雷冬 《力学季刊》2015,36(3):434-441
基于三维数字图像相关方法(3D-DIC)的拉伸实验研究了铸铁的拉伸力学性能,分别得到了应力-应变曲线、弹性模量、抗拉强度、延伸率等拉伸力学性能参数.将3D-DIC应力-应变的测试结果与目前实验中使用广泛的接触式引伸计方法的实验结果作了对比,得到两者的应力-应变曲线基本重合,弹性模量相差不超过4%.此外,还对3D-DIC和机械引伸计的应变绝对误差和相对误差作了详细比较,实验表明3D-DIC在铸铁拉伸力学性能测试中具有足够的应变测量精度,完全可以取代传统引伸计成为一种有效的非接触式变形测量手段.  相似文献   

3.
By comparing two digital images of a test planar specimen surface recorded in different configurations, two-dimensional digital image correlation (2D-DIC) provides full-field displacements to sub-pixel accuracy and full-field strains in the recorded images. For the 2D-DIC systems using an optical lens, a simple pinhole imaging model is commonly used to describe the linear relationship between the measured sensor plane displacements and the actual displacements in the object surface. However, in a practical measurement, various unavoidable disadvantageous factors, such as small out-of-plane motion of the test object surface occurred after loading, small out-of-plane motion of the sensor target due to the self-heating or temperature variation of a camera, and geometric distortion of the imaging lens, may seriously impair or slightly change the originally assumed linear correspondence. In certain cases, these disadvantages may lead to significant errors in displacements and strains measured by 2D-DIC. In this work, the measurement errors of 2D-DIC due to the above three disadvantageous factors are first described in detail. Then, to minimize the errors associated with these disadvantages, a high-accuracy 2D-DIC system using a bilateral telecentric lens is established. The performance of the established 2D-DIC system and other two 2D-DIC systems using a conventional lens and an object-side telecentric lens are investigated experimentally using easy-to-implement stationary, out-of-plane and in-plane rigid body translation tests. A detailed examination reveals that a high-quality bilateral telecentric lens is not only insensitive to out-of-plane motion of the test object and the self-heating of a camera, but also demonstrates negligible lens distortion. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively compare the axial and transversal strains measured by the proposed 2D-DIC system and those measured by strain gage rosettes. The perfect agreement between the two measurements further verifies the accuracy of the established 2D-DIC system.  相似文献   

4.
This paper discusses an experimental method to characterize thin films as they are encountered in micro-electronic devices. The method enables the measurement of the stress and strain of pressure deflected bulged membranes without using a priori defined bulge equations. An enrichment to the Global Digital Image Correlation method is detailed to capture the membrane strain and curvature while robustly dealing with acquisition noise. The accuracy of the method is analyzed and compared to the standard bulge test method. The method is applied to a proof of principle experiment to investigate its applicability and accuracy. Additionally, it is shown for two experimental cases that the method provides accurate results, although the bulge equations do not hold.  相似文献   

5.
The nominal stress–strain relationships of industrial rubber materials under multiaxial deformation are essential for precisely determining the constitutive laws of those materials. This paper proposes a new method for precisely estimating the nominal stress–stretch relationships of carbon-black-filled styrene butadiene rubbers (SBRs) under uniaxial tension, pure shear, and equibiaxial tension by using an in-plane biaxial tensile tester. The proposed method employs sheet-shaped rubber samples with notches for the pure-shear and equibiaxial tension tests to mitigate the influence of non-uniform deformation around the clamps. Finite element analysis and biaxial tensile tests were performed to verify the effectiveness of the proposed method. Performance evaluations based on both numerical calculations and experiments revealed that the proposed method enabled the precise calculation of the nominal stress–stretch relationship for uniform deformation from a tensile load and deformation of the reference area defined at the center of the samples.  相似文献   

6.
Accurate measurements of important tensile properties of thin metal foils are often quite difficult to achieve in uniaxial tests because of sample-preparation difficulties and the tensile instability called necking. Consequently, hydraulic bulge tests have been introduced as a successful means of suppressing these problems through the use of a simplified specimen geometry and biaxial rather than uniaxial tensile-stress states. Considerable effort has been made by various investigators to relate such biaxial stress-strain and ductility data to uniaxial data, generally following the assumption that the bulge is shaped like a spherical cap. The present study evaluates this assumption for foils by measuring actual shapes with unprecedented accuracy and detail using the two-source holographic technique and a polynomial-spline computer analysis of the resulting interferograms. These measurements were made on nine specimens of 0.127-mm-thick annealed rolled copper foil which had been deformed into bulges of varying heights up to rupture. A comparison is made between the measured shapes and the spherical-cap shape generally assumed in the interpretation of bulge-test data. The spherical assumption gives results which are reasonably valid for the later stages of deformation. Indeed, the stress-strain curve obtained from bulge testing corresponds closely with the uniaxial tensile curves for this material. The strain at failure (i.e., elongation) was greater in the biaxial bulge test than in the uniaxial test but not nearly as great as the strain expected from a theoretical model proposed by Hill. However, all the specimens measured exhibited localized areas with larger radii of curvature. The presence of these “flats” may be associated with a mode of failure in the bulge test which corresponds to necking instability in the uniaxial test, and thereby account for the limited strain to failure.  相似文献   

7.
The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Results are discussed and improvements of the method are proposed.  相似文献   

8.
A method is developed for analysis of the elastoplastic stress-strain state of laminated shells of revolution under axisymmetric loading. The shells are made of isotropic and transversally isotropic materials with different moduli. The method is based on the Kirchhoff-Love hypotheses for the whole laminate, the theory of deformation along paths of small curvature (for isotropic materials), and the theory of elasticity with different tensile and compressive moduli (transversely isotropic materials). The problem is solved by the method of successive approximations. Numerical examples are given __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 8, pp. 88–96, August 2005.  相似文献   

9.
The classical Stoney formula relating local equibiaxial film stress to local equibiaxial substrate curvature is not well equipped to handle realistic cases where the film misfit strain, the plate system curvature, and the film thickness and resulting film stress vary with in-plane position. In Part I of this work we have extended the Stoney formula to cover arbitrarily non-uniform film thickness for a thin film/substrate system subject to non-uniform, isotropic misfit strains. The film stresses are found to depend non-locally on system curvatures. In Part II we have designed a demanding experiment whose purpose is to validate the new analysis for the case of radially symmetric deformations. To achieve this, a circular film island with sharp edges and a radially variable, but known, thickness is deposited on the wafer center. The plate system’s curvatures and the film stress distribution are independently measured by using white beam and monochromatic X-ray microdiffraction (μXRD) measurements, respectively. The measured stress field (from monochromatic μXRD) is compared to the predictions of various stress/curvature analyses, all of which have the white beam μXRD measurements as input. The results reveal the shortcomings of the “local” Stoney approach and validate the accuracy of the new “non-local” relation, most notably near the film island edges where stress concentrations dominate.  相似文献   

10.
The bulge test is a particularly convenient testing method for characterizing elastomers under biaxial loading. In addition, it is convenient to utilize this test for validating material models in simulation due to the heterogeneous strain field induced during inflation. During the bulge test the strain field for elastomers covers uniaxial tension at the border to pure shear and equibiaxial tension at the pole. Elastomeric materials exhibit a hyperelastic material behavior, with a dependency on temperature and loading rate. The temperature effect on the mechanical behavior during biaxial loading is considered in the present study. A bulge test setup combined with a temperature chamber is developed in order to characterize this effect, and an exemplary temperature dependent characterization of a poly(norbornene) elastomer is performed with this setup. The equibiaxial stress–strain curves measured at 60 °C, 20 °C and −20 °C are presented.  相似文献   

11.
Anisotropic parameter identification using inhomogeneous tensile test   总被引:1,自引:0,他引:1  
In this contribution, an inverse identification strategy of constitutive laws for elastoplastic behaviour is presented. The proposed inverse algorithm is composed on an appropriate finite element calculation combined with an optimisation procedure. It is applied to identify material anisotropic coefficients using a set up of easy performed laboratory tests. The used experimental data are the plane tensile test and the off axes tensile tests. The identified behaviour models are mainly based on Hill's quadratic yield criterion. Two cases of this yield criterion have been considered: the transverse isotropic and the orthotropic one under an associated and non-associated flow rule assumptions for each case. The yield surface has been assumed to expand isotropically (isotropic strain hardening law) as a function of the plastic work.In order to better describe anisotropic plastic properties of the studied materials, a recently planar anisotropic yield function is used. It is a non-quadratic yield criterion which takes account of anisotropic yield stresses as well as anisotropic strain ratios. It is subsequently shown that the agreement between inverse identification results and experimental measurements were improved.We prove also that the presented strategy is a good alternative to the simplified homogeneous tests assumption, especially for the plane tensile test.  相似文献   

12.
A new modulus of elasticity is defined to be the ratio of an equibiaxial stress to the relative area change in the planes in which the stress acts. This area modulus of elasticity is intermediate in properties between Young's modulus and the bulk modulus. Expressions for the area modulus are computed in isotropic elasticity. A simple, convenient expression for the compliance tensor of transverse isotropy is found in terms of, amongst others, the longitudinal (axial) area modulus and this leads to a new, concise condition for positive definiteness of the compliance tensor. The limits of incompressibility, inextensibility and constant area are briefly considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The surface ‘tensile test’, in which tangential loads are applied through surface mounted adhesive tapes, is a viable method for the assessment of mechanical properties of soft materials, particularly biological soft materials in vivo. In the present work the deformation pattern and force–displacement relationship in the surface tensile test were experimentally investigated using surface displacement analysis (SDA) and numerically simulated using finite element modelling. The experimental and FE results showed close agreement using silicone rubber as a model material. The force–displacement relationship was found to be dependent on the tape separations. SDA measurements and FE simulation showed that the displacement and strain fields were not uniform and the distribution pattern varies with tape separation. A combined experimental–numerical approach to inversely extract material properties using multiple tests with different length scales is proposed and assessed using a model material.  相似文献   

14.
Tomography is a powerful method for the investigation of the internal structure of 3D objects from human bodies to atomic reactors. Classical tomography has been elaborated for the determination of scalar fields, i.e. fields, each point of which is characterized by a scalar. Due to that, algorithms of classical tomography can not be directly applied by investigating stress fields since stress is a tensor. In this paper it is shown that photoelastic tomography can be based on the equations of integrated photoelasticity. In the linear approximation the problem of stress field tomography is decomposed into a number of problems of scalar field tomography for single components of the stress tensor. In the non-linear case the axisymmetric stress field can be determined using a genetic algorithm. The paper is illustrated by several examples.  相似文献   

15.
A combined theoretical/experimental approach accurately quantifying post-necking hardening phenomena in ductile sheet materials that initially exhibit diffuse necking in tension is presented. The method is based on the minimization of the discrepancy between the internal and the external work in the necking zone during a quasi-static tensile test. The main focus of this paper is on the experimental validation of the method using an independent material test. For this purpose, the uniaxial tube expansion test is used to obtain uniaxial strain hardening behavior beyond the point of maximum uniform strain in a tensile test. The proposed method is used to identify the post-necking hardening behavior of a cold rolled interstitial-free steel sheet. It is demonstrated that commonly adopted phenomenological hardening laws cannot accurately describe all hardening stages. An alternative phenomenological hardening model is presented which enables to disentangle pre- and post-necking hardening behavior. Additionally, the influence of the yield surface on the identified post-necking hardening behavior is scrutinized. The results of the proposed method are compared with the hydraulic bulge test. Unlike the hydraulic bulge test, the proposed method predicts a decreased hardening rate in the post-necking regime which might be associated with probing stage IV hardening. While inconclusive, the discrepancy with the hydraulic bulge test suggests differential work hardening at large plastic strains.  相似文献   

16.
17.
The nonlinear behavior of an axisymmetric hyperelastic membrane subjected to pulling forces is analyzed. The membrane is considered to be ideal in the sense that it cannot carry compressive stress resultants. If the membrane has a positive initial Gaussian curvature, the pulling gives rise to wrinkles which form over parts of the surface. The full nonlinear equations governing the membrane behavior in the doubly tense and in the wrinkled regions are formulated, and then solved using a numerical integration procedure. Solutions for various examples are presented, with Hookean and neo-Hookean constitutive behavior. These include a few examples of wrinkled membranes with positive initial Gaussian curvatures, and one example of a membrane with a negative initial Gaussian curvature, where no wrinkles are formed.  相似文献   

18.
An analytical solution to the axisymmetric problem on the action of a distributed load on an isotropic half-space when the load is given by a function dependent on the radial coordinate is obtained. The surface of the half-space is elastically fixed outside the circular domain of load application, the shear stresses are absent along the entire boundary, and the stresses vanish at infinity. At the boundary and inside the elastic half-space, the solutions are represented by the formulas for the stress tensor components and for the displacement vector components.  相似文献   

19.
A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this paper. The important features of this constitutive model are the multiplicative decomposition of the deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model (MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening assumption. The model complexity is further extended by coupling the formulation with the shock equation of state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code. The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated. The final part of this process is a comparison of the results generated by the proposed constitutive model against the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good agreement between experimental and simulation is obtained in each test.  相似文献   

20.
The departure from isotropy of turbulent boundary layers over a smooth and a rough wall is presented. The experimental data are analyzed using an anisotropic invariant map. It is shown that the k-type roughness is characterized by a reduced anisotropy of the Reynolds stress tensor. Moreover, the approximation of the diffusive transport of u and v developed in the Hanjalic-Launder numerical model is compared with the experimental results over a smooth and a rough wall. Diffusive transport of u and v is modeled more accurately in the case of the rough surface than in the case of the smooth surface, which can be attributed to the more isotropic behavior of the Reynolds stress tensor for the structures in the rough-wall layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号