首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let M be a monoid. A ring R is called M-π-Armendariz if whenever α = a 1 g 1 + a 2 g 2 + · · · + a n g n , β = b 1 h 1 + b 2 h 2 + · · · + b m h m R[M] satisfy αβ ∈ nil(R[M]), then a i b j ∈ nil(R) for all i, j. A ring R is called weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical. In this paper, we consider some extensions of M-π-Armendariz rings and further investigate their properties under the condition that R is weakly 2-primal. We prove that if R is an M-π-Armendariz ring then nil(R[M]) = nil(R)[M]. Moreover, we study the relationship between the weak zip-property (resp., weak APP-property, nilpotent p.p.-property, weak associated prime property) of a ring R and that of the monoid ring R[M] in case R is M-π-Armendariz.  相似文献   

2.
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; Z3 ⊕ Z3; Z3B where B is a Boolean ring; local ring with nil Jacobson radical; M2(Z2) or M2(Z3); or the ring of a Morita context with zero pairings where the underlying rings are Z2 or Z3.  相似文献   

3.
Let R be a commutative ring with nonzero identity and J(R) the Jacobson radical of R. The Jacobson graph of R, denoted by JR, is defined as the graph with vertex set RJ(R) such that two distinct vertices x and y are adjacent if and only if 1 ? xy is not a unit of R. The genus of a simple graph G is the smallest nonnegative integer n such that G can be embedded into an orientable surface Sn. In this paper, we investigate the genus number of the compact Riemann surface in which JR can be embedded and explicitly determine all finite commutative rings R (up to isomorphism) such that JR is toroidal.  相似文献   

4.
Let R be a commutative ring with nonzero identity and J(R) be the Jacobson radical of R. The Jacobson graph of R, denoted by J R , is a graph with vertex-set R J(R), such that two distinct vertices a and b in R J(R) are adjacent if and only if 1 ? ab is not a unit of R. Also, the line graph of the Jacobson graph is denoted by L(J R ). In this paper, we characterize all finite commutative rings R such that the graphs L(J R ) are planar, toroidal or projective.  相似文献   

5.
Realization of Boolean functions by circuits is considered over an arbitrary infinite complete basis. The depth of a circuit is defined as the greatest number of functional elements constituting a directed path from an input of the circuit to its output. The Shannon function of the depth is defined for a positive integer n as the minimal depth D B (n) of the circuits sufficient to realize every Boolean function on n variables over a basis B. It is shown that, for each infinite basis B, either there exists a constant β ? 1 such that D B (n) = β for all sufficiently large n or there exist an integer constant γ ? 2 and a constant δ such that log γ n ? D B (n) ? log γ n + δ for all n.  相似文献   

6.
Let R be a commutative ring, M an R-module and G a group of R-automorphisms of M, usually with some sort of rank restriction on G. We study the transfer of hypotheses between M/C M (G) and [M,G] such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose [M,G] is R-Noetherian. If G has finite rank, then M/C M (G) also is R-Noetherian. Further, if [M,G] is R-Noetherian and if only certain abelian sections of G have finite rank, then G has finite rank and is soluble-by-finite. If M/C M (G) is R-Noetherian and G has finite rank, then [M,G] need not be R-Noetherian.  相似文献   

7.
Realization of Boolean functions by circuits of functional elements is considered over arbitrary complete bases (including infinite ones). The depth of a circuit means the maximal number of functional elements forming an oriented chain going from inputs of the circuit to its output. It is shown that for any basis B the growth order of the Shannon function of depth D B (n) for n → ∞ is equal to 1, log2 n, or n, and the latter case appears if and only if the basis B is finite.  相似文献   

8.
We show that for a linear space of operators M ? B(H1, H2) the following assertions are equivalent. (i) M is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map Ψ = (ψ1, ψ2) on a bilattice Bil(M) of subspaces determined by M with P ≤ ψ1(P,Q) and Q ≤ ψ2(P,Q) for any pair (P,Q) ∈ Bil(M), and such that an operator TB(H1, H2) lies in M if and only if ψ2(P,Q)Tψ1(P,Q) = 0 for all (P,Q) ∈ Bil(M). This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.  相似文献   

9.
We obtain the structure of the rings in which every element is either a sum or a difference of a nilpotent and an idempotent that commute. This extends the structure theorems of a commutative weakly nil-clean ring, of an abelian weakly nil-clean ring, and of a strongly nil-clean ring. As applications, this result is used to determine the 2-primal rings R such that the matrix ring \(\mathbb{M}_n (R)\) is weakly nil-clean, and to show that the endomorphism ring End D (V) over a vector space V D is weakly nil-clean if and only if it is nil-clean or dim(V) = 1 with D?= ?3.  相似文献   

10.
Let R be a ring. A subclass T of left R-modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let T be a weak torsion class of left R-modules and n a positive integer. Then a left R-module M is called T-finitely generated if there exists a finitely generated submodule N such that M/NT; a left R-module A is called (T,n)-presented if there exists an exact sequence of left R-modules
$$0 \to {K_{n - 1}} \to {F_{n - 1}} \to \cdots \to {F_1} \to {F_0} \to M \to 0$$
such that F0,..., Fn?1 are finitely generated free and Kn?1 is T-finitely generated; a left R-module M is called (T,n)-injective, if Ext n R (A,M) = 0 for each (T, n+1)-presented left R-module A; a right R-module M is called (T,n)-flat, if Tor R n (M,A) = 0 for each (T, n+1)-presented left R-module A. A ring R is called (T,n)-coherent, if every (T, n+1)-presented module is (n + 1)-presented. Some characterizations and properties of these modules and rings are given.
  相似文献   

11.
A general theorem (principle of a priori boundedness) on solvability of the boundary value problem dx = dA(t) · f(t, x), h(x) = 0 is established, where f: [a, b]×R n → R n is a vector-function belonging to the Carathéodory class corresponding to the matrix-function A: [a, b] → R n×n with bounded total variation components, and h: BVs([a, b],R n ) → R n is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition x(t1(x)) = B(x) · x(t 2(x))+c 0, where t i: BVs([a, b],R n ) → [a, b] (i = 1, 2) and B: BVs([a, b], R n ) → R n are continuous operators, and c 0 ∈ R n .  相似文献   

12.
Let R be an associative ring with identity. An R-module M is called an NCS module if C (M)∩S(M) = {0}, where C (M) and S(M) denote the set of all closed submodules and the set of all small submodules of M, respectively. It is clear that the NCS condition is a generalization of the well-known CS condition. Properties of the NCS conditions of modules and rings are explored in this article. In the end, it is proved that a ring R is right Σ-CS if and only if R is right perfect and right countably Σ-NCS. Recall that a ring R is called right Σ-CS if every direct sum of copies of RR is a CS module. And a ring R is called right countably Σ-NCS if every direct sum of countable copies of RR is an NCS module.  相似文献   

13.
In recent years, it has become popular to realize Boolean functions by combinational circuits. In many cases, the further use of the scheme constructed requires its geometric realization, i.e., a certain embedding in one or another specific geometric structure. The role of such structure is often played by the unit n-dimensional cube.In this paper, we consider quasihomeomorphic embeddings of combinational circuits in hypercubes such that the nodes of the scheme go into vertices of the hypercube and bundles of arcs go into similar bundles or the so-called transition trees of the hypercube having no common internal vertices.
Let B be a finite complete basis of functional elements and R B(n) be the minimum dimension of a hypercube such that, for any function f(x 1, …, x n ) of Boolean logic, there is a certain scheme of functional elements in basis B realizing f(x 1, …, x n ) which can be quasihomeomorphically embedded in this cube. The main result of this work consists in derivation of the following estimates:
$n - \log \log (n) - c_B \leqslant R_B (n) \leqslant n - \log \log (n) + c'_B .$
Here, c B and cB are basis-dependent constants.  相似文献   

14.
Let R be a commutative ring with 1 ≠ 0 and U(R) be the set of all unit elements of R. Let m, n be positive integers such that m > n. In this article, we study a generalization of n-absorbing ideals. A proper ideal I of R is called an (m, n)-absorbing ideal if whenever a 1?a m I for a 1,…, a m R?U(R), then there are n of the a i ’s whose product is in I. We investigate the stability of (m, n)-absorbing ideals with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost Dedekind domain every (m, n)-absorbing ideal is a product of at most m ? 1 maximal ideals.  相似文献   

15.
A class of circuits of functional elements over the standard basis of the conjunction, disjunction, and negation elements is considered. For each circuit Σ in this class, its depth D(Σ) and dimension R(Σ) equal to the minimum dimension of the Boolean cube allowing isomorphic embedding Σ are defined. It is established that for n = 1, 2,… and an arbitrary Boolean function f of n variables there exists a circuit Σf for implementing this function such that Rf) ? n ? log2 log2n + O(1) and Df) ? 2n ? 2 log2 log2n + O(1). It is proved that for n = 1, 2,… almost all functions of n variables allow implementation by circuits of the considered type, whose depth and dimension differ from the minimum values of these parameters (for all equivalent circuits) by no more than a constant and asymptotically no more than by a factor of 2, respectively.  相似文献   

16.
Given an arbitrary quasiprojective right R-module P, we prove that every module in the category σ(P) is weakly regular if and only if every module in σ(M/I(M)) is lifting, where M is a generating object in σ(P). In particular, we describe the rings over which every right module is weakly regular.  相似文献   

17.
Let R be a ring with identity. We use J(R); G(R); and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R; respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N ? J(R) of R; that R has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2; 3; 4; and 5 orbits under the left regular action on X(R) by G(R): For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R); then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.  相似文献   

18.
Let Mm,n be the set of all m × n real matrices. A matrix A ∈ Mm,n is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions T: Mm,n → Mm,n that preserve or strongly preserve row-dense matrices, i.e., T(A) is row-dense whenever A is row-dense or T(A) is row-dense if and only if A is row-dense, respectively. Similarly, a matrix A ∈ Mn,m is called a column-dense matrix if every column of A is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.  相似文献   

19.
Eklof and Shelah [8] call an abelian group absolutely indecomposable if it is directly indecomposable in every generic extension of the universe. More generally, we say that an R-module is absolutely rigid if its endomorphism ring is just the ring of scalar multiplications by elements of R in every generic extension of the universe. In [8] it is proved that there do not exist absolutely rigid abelian groups of size ≥ κ(ω), where κ(ω) is the first ω-Erd?s cardinal (for its definition see the introduction). A similar result holds for rigid systems of abelian groups. On the other hand, recently Göbel and Shelah [15] proved that for modules of size < κ(ω) this phenomenon disappears. Their result on R ω -modules (i.e. on R-modules with countably many distinguished submodules) that establishes the existence of ‘well-behaving’ fully rigid systems of abelian groups of large sizes < κ(ω) will be extended here to a large class of R-modules by proving the existence of modules of any sizes < κ(ω) with endomorphism rings which are absolute. In order to cover rings as general as possible, we utilize a method developed by Brenner, Butler and Corner (see [2, 3, 5]) to reduce the number of distinguished submodules required in the construction from ?0 to five.We give several applications of our results. They include modules over domains with four pairwise comaximal prime elements, and modules over quasi-local rings whose completions contain at least five algebraically independent elements.  相似文献   

20.
We find the groups of motions of eight three-dimensional maximal mobility geometries. These groups are actions of just three Lie groups SL2(RN, SL2(C) R , and SL2(R)?SL2(R) on the space R3, where N is a normal abelian subgroup. We also find explicit expressions for these actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号