首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Fluorination of low-density polyethylene, polyacetylene, and poly(vinyl alcohol) was carried out using SF6 gas under electric discharge. The polymers were partially fluorinated and the extent of fluorination was more in the case of poly (vinyl alcohol) than the other two polymers. The fluorinated polymers were characterized by elemental analysis (Fluorine), IR, and x-ray diffraction. Optical transparency of the films was also measured. The fluorinated polymers show better solvent resistance and decreased transparency than the virgin polymer. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The results of study of the fundamental features of the direct fluoridation of polymers, physical and chemical properties of the fluorinated layer at the surface and possible application areas of the direct fluoridation are reviewed. The influence of the composition of fluorinating mixture, the process pressure, temperature and duration on the kinetics of formation of the fluorinated layer was investigated. The fluorinated layer composition, density, refraction index and surface energy were measured at the different conditions of the surface treatment. Kinetics of termination of long-lived radicals formed inside the fluorinated layer was studied. The methods of enhancing the barrier properties of fluorinated polyethylene with respect to alcohol-containing fuel, enhancing the gas separation properties of flat membranes and hollow-fiber membrane modules and improving chemical stability of polymer pipes were developed. Possibility to use direct fluorination for reinforcement of polymer composites was demonstrated.  相似文献   

3.
Several new synthesis methods of fluorinated carbon nanofibres, such as controlled fluorination using fluorinating agent (TbF4 or XeF2), or assisted fluorination under UV and gamma irradiation, are reviewed and compared with the direct fluorination using undiluted fluorine gas. The results highlight the different fluorination mechanisms for the direct fluorination and the new methods. The other advantage of those alternative fluorination routes is the possibility to provide fine tuning of the fluorination level, i.e. from F/C atomic ratio close to zero, as a functionalization, to the unity (CF1) according to the required application, electrochemical or tribological. Two applications are described in this paper as a function of the fluorine content: protection against ozonation and use as solid lubricants.  相似文献   

4.
To address the need for perfluoro polymers with higher Tg, we have prepared and characterized various perfluorodioxolane monomers via direct fluorination of the hydrocarbon precursors. These monomers were readily polymerized in bulk or in solution initiated by perfluorodibenzoyl peroxide. The polymers obtained have relatively high Tg(~160°C) and exhibited low material dispersion. These polymers are completely amorphous and soluble in fluorinated solvents. The polymers are also chemically and thermally stable (Tg > 300°C). Thus, these perfluorodioxolane polymers may be used as plastic optical fiber material where high Tg is required, such as in automobile and aircraft application. These perfluorodioxolane polymers were also investigated for use as gas separation membrane. Among these polymers, the copolymer of perfluoro (2‐methylene‐1,3‐dioxolane) and perfluoro (2‐methylene‐4,5‐dimethyl dioxolane) showed superior gas separation performance compared with the commercial perfluoro polymers for a number of gas pair, including CO2/CH4, He/CH4, H2/CH4, and N2/CH4. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A new class of highly fluorinated aromatic poly(ether-amide)s was prepared through triphenyl phosphite-activated polycondensation of 2,2′-bis(3,4,5-trifluorophenyl)-4,4′-diaminodiphenyl ether (FPAPE) and four dicarboxylic acid comonomers. All the resulting polymers were thoroughly characterized by FT-IR, UV, and NMR spectroscopic methods. The effects of the fluorine atoms directly linked to the lateral phenyl rings as well as fluoro-containing phenyl groups attached to the macromolecular chains on some properties of the polymers were investigated by comparing with poly(ether-amide)s prepared from 4,4′-oxydianiline (4,4′-ODA) and 2,2′-diphenyl-4,4′-diaminodiphenyl ether (PAPE). The FPAPE-derived polymers exhibited excellent solubility in a variety of organic solvents. Results obtained from X-ray studies showed that the presence of the bulky fluoro-containing phenyl groups attached to the chains disrupts their structural order in a great amount, and leads to a decrease in crystallinity extent of the macromolecules. Furthermore, the highly fluorinated polymeric chains showed a significant enhancement in organo-solubility, heat-stability and Tg values when compared to their non-fluorinated counterparts.  相似文献   

6.
The design of molecularly recyclable polymers contributes to a possible solution to the end-of-use issue of polymeric materials and gives a closed-loop approach toward a circular materials economy. The biobased semi-aromatic polyesters (e.g., poly(phloretic acid), poly(dihydroferulic acid), and poly(dihydro-sinapinic acid)), described in this paper, can be derived entirely from biomass (mainly lignin). The described polyesters exhibit thermal properties similar to those of certain commodity polymeric materials. These polyesters with ligno-phytochemicals as monomer have so far demonstrated complete and almost infinite molecular recyclability with a loss of total mass less than 5% per cycle. Moreover, molecular weight and thermal properties (Tg, Tm, and Tcryst) of the tenth generation polymeric material are identical to those of the first generation.  相似文献   

7.
Carbon nanofibers were fluorinated in two manners, in pure fluorine gas (direct fluorination) and with a fluorinating agent (TbF4 during the so-called controlled fluorination). The resulting fluorinated nanofibers have been investigated by solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). This underlines that the fluorination mechanisms differ since a (CF)n structural type is obtained, whatever the temperature, with the controlled reaction, whereas, during the direct process, a (C2F)n type is formed over a wide temperature range. Through a careful characterization of the products, i.e. density of dangling bonds (as internal paramagnetic centers), structural type (acting on molecular motion) and specific surface area (related to the amount of physisorbed O2), the effect of atmospheric oxygen molecules on the spin-lattice nuclear relaxation has been underlined.  相似文献   

8.
The relative degree of fluorotelomer-based acrylate polymers (FTACPs) fluorination was demonstrated to influence the sample preparation protocol for matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. A homologous series of FTACPs were synthesized from fluorotelomer and hydrocarbon acrylates of different chain lengths, which varied the ratio of perfluorinated to hydrogenated carbons (RF/RH). The solubility of FTACPs in tetrahydrofuran (THF) and chloroform was observed to decrease for highly fluorinated FTACPs (RF/RH > 0.5) promoting FTACP aggregation. No dependence on the degree of fluorination was observed for the solubility of FTACPs in the fluorinated solvents α,α,α-trifluorotoluene (TFT) or dichloropentafluoropropanes (HCFC-225). For FTACPs with a low degree of fluorination such as poly(8:2 FTAC-co-HDA) (RF/RH = 0.375), MALDI-ToF analysis was successful using a conventional sample preparation protocol with THF, and dithranol (Dith) matrix. Conversely, the poor solubility of the highly fluorinated poly(8:2 FTAC-co-BA) (RF/RH = 1.5) in THF resulted in mass discrimination. Several fluorinated sample preparation protocols were evaluated for poly(8:2 FTAC-co-BA) using TFT and HCFC-225, and decafluoroazobenzene (DFAB) or 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) matrices. The high volatility of HCFC-225 decreased FTACP pooling during solvent evaporation in comparison to the less volatile TFT, and improved the quantity of detectable signals. MALDI-ToF analysis of poly(8:2 FTAC-co-BA) in a 95:5 HCFC-225:methanol with DCTB being the best sample preparation protocol for highly fluorinated FTACPs in this study producing the highest number of observable signals. Employing a fluorinated sample preparation offers the capability of analyzing other highly fluorinated polymers that are not compatible with conventional sample preparations.  相似文献   

9.
Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4‐methyl‐2‐pentyne) (PMP), and polymers with intrinsic microporosity (PIM‐1) reduces gas permeabilities and limits their application as gas‐separation membranes. While super glassy polymers are initially very porous, and ultra‐permeable, they quickly pack into a denser phase becoming less porous and permeable. This age‐old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.  相似文献   

10.
Various types of fluorine‐containing star‐shaped poly(vinyl ether)s were successfully synthesized by crosslinking reactions of living polymers based on living cationic polymerization. Star polymers with fluorinated arm chains were prepared by the reaction between a divinyl ether and living poly(vinyl ether)s with fluorine groups (C4F9, C6F13, and C8F17) at the side chain using cationogen/Et1.5AlCl1.5 in a fluorinated solvent (dichloropentafluoropropanes), giving star‐shaped fluorinated polymers in high yields with a relatively narrow molecular weight distribution. The concentration of living polymers for the crosslinking reaction and the molar feed ratio of a bifunctional vinyl ether to living polymers affected the yield and molecular weight of the star polymers. Star polymers with block arms were prepared by a linking reaction of living block copolymers of a fluorinated segment and a nonfluorinated segment. Heteroarm star‐shaped polymers containing two‐ or three‐arm species were synthesized using a mixture of different living polymer species for the reaction with a bifunctional vinyl ether. The obtained polymers underwent temperature‐induced solubility transitions in various organic solvents, and their concentrated solutions underwent sol–gel transitions, based on the solubility transition of a thermoresponsive fluorinated segment. Furthermore, a slight amount of fluorine groups were shown to be effective for physical gelation when those were located at the arm ends of a star polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Polyolefins and fluoropolymers were reacted with elemental fluorine under carefully controlled conditions in a thermobalance adapted to be compatible with fluorine gas. The fluorination reactions were monitored by measuring the mass increase as a result of hydrogen substitution by fluorine. The mass increase was directly proportional to the square root of the fluorination time, which indicates that fluorine gas diffusion to the unreacted surface is the rate determining step. The fluorination rate was increased by increasing the fluorine concentration and the fluorination temperature. The fluorination rate is higher when nitrogen rather than helium is used as diluting gas. The fluorination rate for the reaction in which CO2 is used as diluting gas is the same as during fluorination with nitrogen as diluting gas, while the presence of oxygen dramatically decreased the fluorination rate. Oxygen is incorporated during fluorination with oxygen as diluting gas, while no functionalization was observed when CO2 was employed as diluting gas. The effect of polymer structure on fluorination was studied. Poly(vinylfluoride) gained mass during fluorination, while no reaction was observed for poly(vinylidenefluoride). The reaction rate for polypropylene was higher than that of polyethylene. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   

12.
Glassy polyimide membranes are attractive for industrial applications in sour natural gas purification. Unfortunately, the lack of fundamental understanding of relationships between polyimide chemical structures and their gas transport properties in the presence of H2S constrains the design and engineering of advanced membranes for such challenging applications. Herein, 6FDA‐based polyimide membranes with engineered structures were synthesized to tune their CO2/CH4 and H2S/CH4 separation performances and plasticization properties. Under ternary mixed sour gas feeds, controlling polymer chain packing and plasticization tendency of such polyimide membranes via tuning the chemical structures were found to offer better combined H2S and CO2 removal efficiency compared to conventional polymers. Fundamental insights into structure–property relationships of 6FDA‐based polyimide membranes observed in this study offer guidance for next generation membranes for sour natural gas separation.  相似文献   

13.
Glassy polyimide membranes are attractive for industrial applications in sour natural gas purification. Unfortunately, the lack of fundamental understanding of relationships between polyimide chemical structures and their gas transport properties in the presence of H2S constrains the design and engineering of advanced membranes for such challenging applications. Herein, 6FDA-based polyimide membranes with engineered structures were synthesized to tune their CO2/CH4 and H2S/CH4 separation performances and plasticization properties. Under ternary mixed sour gas feeds, controlling polymer chain packing and plasticization tendency of such polyimide membranes via tuning the chemical structures were found to offer better combined H2S and CO2 removal efficiency compared to conventional polymers. Fundamental insights into structure–property relationships of 6FDA-based polyimide membranes observed in this study offer guidance for next generation membranes for sour natural gas separation.  相似文献   

14.
This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2/N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel‐fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2/N2 selectivity are designed by incorporating CO2‐philic groups in polymers such as poly(ethylene oxide)‐containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2/N2 separation properties for CO2 capture from flue gas are highlighted.  相似文献   

15.
The outstanding characteristics of fluorine gas, e.g., extreme reactivity and oxidizing power, and the utmost electronegativity of F ion, lead to very strong bonds between fluorine and most of the other elements of the periodical table. Treatments involving F2, fluorinated gases and rf plasma-enhanced fluorination (PEF) constitute exceptional tools for modifying the surface properties of materials. Many advantages of these techniques can be indeed outlined, when compared to more conventional methods: low-temperature reactions (even at room temperature), chemical modifications limited to surface only without changing the bulk properties, possible non-equilibrium reactions. Depending on the type of starting materials and employed techniques, the improved properties may concern wettability, adhesion, chemical stability, barrier properties, biocompatibility, grafting, mechanical behavior. Several examples of surface fluorination will be given on various types of carbon-based materials, elastomers and polymers.  相似文献   

16.
SF6 plasma treatment using an RF discharge was carried out for the surface fluorination of polytrimethylsilylpropyne (PTMSP) and polyvinyltrimethylsilane (PVTMS) films. Gas permeation of the fluorinated and untreated films for O2, N2, He, H2, CH4 and CO2 gases has been measured. Plasma fluorination increases the ideal selectivities of the PTMSP films decreasing their permeances for all the gases measured, and does not affect the permeances and selectivities of the PVTMS films. The composition and chemical structure of the fluorinated polymer surface were investigated using X-ray photoelectron spectroscopy (XPS) and 19F nuclear magnetic resonance (NMR) spectroscopy. Within the range of the treatment parameters studied, permselectivity and surface composition of the fluorinated PTMSP films depend slightly on the treatment time and the density of the fluorine atom flux on the modified surface. The trimethylsilyl substituents are detached and carbon atoms are partially fluorinated during modification. The structure of the fluorinated layer contains crosslinks and unsaturated bonds.  相似文献   

17.
《中国化学》2018,36(6):502-506
Fluorination of conjugated polymers is one of the effective strategies to tune the molecular energy levels and morphology for high efficient polymer solar cells (PSCs). Herein, two novel donor‐acceptor conjugated polymers, PffBT and PBT, based on bis(3,5‐bis(hexyloxy)phenyl)benzo[1,2‐ b:4,5‐b']dithiophene and benzo[c][1,2,5]thiadiazole (BT) with or without fluorination, respectively, were synthesized, and their photovoltaic properties were compared. The polymer PffBT based on fluorinated BT showed lower frontier energy levels, improved polymer ordering, and a well‐developed fibril structure in the blend with PC71BM. As a result, the PSCs based on PffBT/PC71BM exhibit a superior power conversion efficiency (PCE) of 8.6% versus 4.4% for PBT‐based devices, due to a high space charge limit current (SCLC) hole mobility, mixed orientation of polymer crystals in the active layer, and low bimolecular recombination.  相似文献   

18.
Chemical–physical properties of ultra‐high‐molecular weight polyethylene (UHMWPE) treated by direct fluorination, direct fluorination accompanied with UV irradiation, by XeF2 and by TbF4, were tested by FTIR spectroscopy, visible spectroscopy, 19F and 13C NMR, scanning electron microscopy, XRD, and EPR. Surface energy measurements were carried out. The direct fluorination of UHMWPE is a diffusion‐controlled process, but treatment with XeF2 is a kinetically controlled one. Direct fluorination and direct fluorination accompanied with UV irradiation results mainly in a formation of ? CF2? groups. On the contrary, ? CHF? groups are prevailing in UHMWPE treated with XeF2 and TbF4. Surface texture of UHMWPE treated with XeF2 and with F2 is quite different. Direct fluorination results in a higher polarity of the polymer surface when compared with treatment with XeF2. For the case of direct fluorination, both long‐lived peroxy and fluoroalkylradicals are formed. For the case of treatment with XeF2, only fluoroalkylradicals were detected. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:3559–3573, 2011  相似文献   

19.
The development of ultra-inert composites using fluorinated carbon fibres as the reinforcement requires fluorinated carbon fibres with a durable surface composition. Here we report the effect of direct fluorination using an F2/N2 mixture at 653 K on the surface and bulk properties of two types of high strength carbon fibres. These were treated up to a surface fluorine content of ∼64 at.% and a bulk fluorine content of ∼15 mass%. A colour change was observed after fluorination caused by the changes in the graphitic band structure of the carbon fibres by the introduction of carbon sp3 hybridisation. The tensile strength and Young's modulus decrease after fluorination by up to 33 and 22%, respectively. XRD shows marginal changes in the interlayer distance but the crystallite size increases. Changes in the electrical conductivity of the fluorinated carbon fibres indicate that the modification is confined to the near surface volume. Predominantly covalent C-F bonds are formed as shown by X-ray photoelectron spectroscopy (XPS) and measured zeta (ζ)-potentials. Hence the fluorinated fibres are hydrophobic and have low surface tensions. This and the large increase in fibre surface area, as determined by nitrogen adsorption, is expected to facilitate interfacial interaction between fluorinated carbon fibres and fluoropolymers.  相似文献   

20.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号