首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
For L a finite lattice, let ${\mathbb {C}(L) \subseteq L^2}$ denote the set of pairs γ = (γ 0, γ 1) such that ${\gamma_0 \prec \gamma_1}$ and order it as followsγδ iff γ 0δ 0, ${\gamma_{1} \nleq \delta_0,}$ and γ 1δ 1. Let ${\mathbb {C}(L, \gamma)}$ denote the connected component of γ in this poset. Our main result states that, for any ${\gamma, \mathbb {C}(L, \gamma)}$ is a semidistributive lattice if L is semidistributive, and that ${\mathbb {C}(L, \gamma)}$ is a bounded lattice if L is bounded. Let ${\mathcal{S}_{n}}$ be the Permutohedron on n letters and let ${\mathcal{T}_{n}}$ be the Associahedron on n + 1 letters. Explicit computations show that ${\mathbb {C}(\mathcal{S}_{n}, \alpha) = \mathcal{S}_{n-1}}$ and ${\mathbb {C}(\mathcal {T}_n, \alpha) = \mathcal {T}_{n-1}}$ , up to isomorphism, whenever α1 is an atom of ${\mathcal{S}_{n}}$ or ${\mathcal{T}_{n}}$ . These results are consequences of new characterizations of finite join-semidistributive and of finite lower bounded lattices: (i) a finite lattice is join-semidistributive if and only if the projection sending ${\gamma \in \mathbb {C}(L)}$ to ${\gamma_0 \in L}$ creates pullbacks, (ii) a finite join-semidistributive lattice is lower bounded if and only if it has a strict facet labelling. Strict facet labellings, as defined here, are a generalization of the tools used by Caspard et al. to prove that lattices of finite Coxeter groups are bounded.  相似文献   

3.
The moduli space of smooth curves admits a beautiful compactification $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ by the moduli space of stable curves. In this paper, we undertake a systematic classification of alternate modular compactifications of $\mathcal{M}_{g,n}$ . Let $\mathcal{U}_{g,n}$ be the (non-separated) moduli stack of all n-pointed reduced, connected, complete, one-dimensional schemes of arithmetic genus g. When g=0, $\mathcal{U}_{0,n}$ is irreducible and we classify all open proper substacks of $\mathcal{U}_{0,n}$ . When g≥1, $\mathcal{U}_{g,n}$ may not be irreducible, but there is a unique irreducible component $\mathcal{V}_{g,n} \subset\mathcal{U}_{g,n}$ containing $\mathcal{M}_{g,n}$ . We classify open proper substacks of $\mathcal {V}_{g,n}$ satisfying a certain stability condition.  相似文献   

4.
We consider a real reductive dual pair (G′, G) of type I, with rank ${({\rm G}^{\prime}) \leq {\rm rank(G)}}$ . Given a nilpotent coadjoint orbit ${\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}$ , let ${\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}$ denote the complex orbit containing ${\mathcal{O}^{\prime}}$ . Under some condition on the partition λ′ parametrizing ${\mathcal{O}^{\prime}}$ , we prove that, if λ is the partition obtained from λ by adding a column on the very left, and ${\mathcal{O}}$ is the nilpotent coadjoint orbit parametrized by λ, then ${\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}$ , where ${\tau, \tau^{\prime}}$ are the moment maps. Moreover, if ${chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}$ , where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to ${\mu_{\mathcal{O}^{\prime}}}$ with corresponds to ${\mathcal{O}_\mathbb{C}}$ via the Springer correspondence.  相似文献   

5.
Let $\{\varphi _n(z)\}_{n\ge 0}$ be a sequence of inner functions satisfying that $\zeta _n(z):=\varphi _n(z)/\varphi _{n+1}(z)\in H^\infty (z)$ for every $n\ge 0$ and $\{\varphi _n(z)\}_{n\ge 0}$ has no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace $\mathcal{M }$ of $H^2(\mathbb{D }^2)$ . The ranks of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }_z$ and $\mathcal{F }^*_z$ respectively are determined, where $\mathcal{F }_z$ is the fringe operator on $\mathcal{M }\ominus w\mathcal{M }$ . Let $\mathcal{N }= H^2(\mathbb{D }^2)\ominus \mathcal{M }$ . It is also proved that the rank of $\mathcal{M }\ominus w\mathcal{M }$ for $\mathcal{F }^*_z$ equals to the rank of $\mathcal{N }$ for $T^*_z$ and $T^*_w$ .  相似文献   

6.
We study the sets $\mathcal{T}_{v}=\{m \in\{1,2,\ldots\}: \mbox{there is a convex polygon in }\mathbb{R}^{2}\mbox{ that has }v\mbox{ vertices and can be tiled with $m$ congruent equilateral triangles}\}$ , v=3,4,5,6. $\mathcal{T}_{3}$ , $\mathcal{T}_{4}$ , and $\mathcal{T}_{6}$ can be quoted completely. The complement $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ of $\mathcal{T}_{5}$ turns out to be a subset of Euler’s numeri idonei. As a consequence, $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ can be characterized with up to two exceptions, and a complete characterization is given under the assumption of the Generalized Riemann Hypothesis.  相似文献   

7.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

8.
The present paper proposes a general theory for $\left( \mathcal{Z}_{1}, \mathcal{Z}_{2}\right) $ -complete partially ordered sets (alias $\mathcal{Z} _{1}$ -join complete and $\mathcal{Z}_{2}$ -meet complete partially ordered sets) and their Stone-like representations. It is shown that for suitably chosen subset selections $\mathcal{Z}_{i}$ (i?=?1,...,4) and $\mathcal{Q} =\left( \mathcal{Z}_{1},\mathcal{Z}_{2},\mathcal{Z}_{3},\mathcal{Z} _{4}\right) $ , the category $\mathcal{Q}$ P of $\left( \mathcal{Z}_{1},\mathcal{Z}_{2}\right) $ -complete partially ordered sets and $\left( \mathcal{Z}_{3},\mathcal{Z}_{4}\right) $ -continuous (alias $\mathcal{ Z}_{3}$ -join preserving and $\mathcal{Z}_{4}$ -meet preserving) functions forms a useful categorical framework for various order-theoretical constructs, and has a close connection with the category $\mathcal{Q}$ S of $\mathcal{Q}$ -spaces which are generalizations of topological spaces involving subset selections. In particular, this connection turns into a dual equivalence between the full subcategory $ \mathcal{Q}$ P s of $\mathcal{Q}$ P of all $\mathcal{Q}$ -spatial objects and the full subcategory $\mathcal{Q}$ S s of $\mathcal{Q}$ S of all $\mathcal{Q}$ -sober objects. Here $\mathcal{Q}$ -spatiality and $\mathcal{Q}$ -sobriety extend usual notions of spatiality of locales and sobriety of topological spaces to the present approach, and their relations to $\mathcal{Z}$ -compact generation and $\mathcal{Z}$ -sobriety have also been pointed out in this paper.  相似文献   

9.
Let $\mathcal{T}_{n}$ be the semigroup of all full transformations on the finite set X n ={1,2,…,n}. For 1≤rn, set $\mathcal {T}(n, r)=\{ \alpha\in\mathcal{T}_{n} | \operatorname{rank}(\alpha)\leq r\}$ . In this note we show that, for 2≤rn?2, any maximal regular subsemigroup of the semigroup $\mathcal{T} (n,r)$ is idempotent generated, but this may not happen in the semigroup $\mathcal{T}(n, n-1)$ .  相似文献   

10.
In classical linear algebra, extending the ring of scalars of a free module gives rise to a new free module containing an isomorphic copy of the former and satisfying a certain universal property. Also, given two free modules on the same ring of scalars and a morphism between them, enlarging the ring of scalars results in obtaining a new morphism having the nice property that it coincides with the initial map on the isomorphic copy of the initial free module in the new one. We investigate these problems in the category of free ${\mathcal{A}}$ -modules, where ${\mathcal{A}}$ is an ${\mathbb{R}}$ -algebra sheaf. Complexification of free ${\mathcal{A}}$ -modules, which is defined to be the process of obtaining new free ${\mathcal{A}}$ -modules by enlarging the ${\mathbb{R}}$ -algebra sheaf ${\mathcal{A}}$ to a ${\mathbb{C}}$ -algebra sheaf, denoted ${\mathcal{A}_\mathbb{C}}$ , is an important particular case (see Proposition 2.1, Proposition 3.1). Attention, on the one hand, is drawn on the sub- ${_{\mathbb{R}}\mathcal{A}}$ -sheaf of almost complex structures on the sheaf ${{_\mathbb{R}}\mathcal{A}^{2n}}$ , the underlying ${\mathbb{R}}$ -algebra sheaf of a ${\mathbb{C}}$ -algebra sheaf ${\mathcal{A}}$ , and on the other hand, on the complexification of the functor ${\mathcal{H}om_\mathcal {A}}$ , with ${\mathcal{A}}$ an ${\mathbb{R}}$ -algebra sheaf.  相似文献   

11.
Let ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ denote the standard weighted Bergman space over the unit ball ${\mathbb{B}^n}$ in ${\mathbb{C}^n}$ . New classes of commutative Banach algebras ${\mathcal{T}(\lambda)}$ which are generated by Toeplitz operators on ${\mathcal{A}_{\lambda}^2(\mathbb{B}^n)}$ have been recently discovered in Vasilevski (Integr Equ Oper Theory 66(1):141?C152, 2010). These algebras are induced by the action of the quasi-elliptic group of biholomorphisms of ${\mathbb{B}^n}$ . In the present paper we analyze in detail the internal structure of such an algebra in the lowest dimensional case n?=?2. We explicitly describe the maximal ideal space and the Gelfand map of ${\mathcal{T}(\lambda)}$ . Since ${\mathcal{T}(\lambda)}$ is not invariant under the *-operation of ${\mathcal{L}(\mathcal{A}_{\lambda}^2(\mathbb{B}^n))}$ its inverse closedness is not obvious and is proved. We remark that the algebra ${\mathcal{T}(\lambda)}$ is not semi-simple and we derive its radical. Several applications of our results are given and, in particular, we conclude that the essential spectrum of elements in ${\mathcal{T}(\lambda)}$ is always connected.  相似文献   

12.
We propose a first-order augmented Lagrangian algorithm (FALC) to solve the composite norm minimization problem $$\begin{aligned} \begin{array}{ll} \min \limits _{X\in \mathbb{R }^{m\times n}}&\mu _1\Vert \sigma (\mathcal{F }(X)-G)\Vert _\alpha +\mu _2\Vert \mathcal{C }(X)-d\Vert _\beta ,\\ \text{ subject} \text{ to}&\mathcal{A }(X)-b\in \mathcal{Q }, \end{array} \end{aligned}$$ where $\sigma (X)$ denotes the vector of singular values of $X \in \mathbb{R }^{m\times n}$ , the matrix norm $\Vert \sigma (X)\Vert _{\alpha }$ denotes either the Frobenius, the nuclear, or the $\ell _2$ -operator norm of $X$ , the vector norm $\Vert .\Vert _{\beta }$ denotes either the $\ell _1$ -norm, $\ell _2$ -norm or the $\ell _{\infty }$ -norm; $\mathcal{Q }$ is a closed convex set and $\mathcal{A }(.)$ , $\mathcal{C }(.)$ , $\mathcal{F }(.)$ are linear operators from $\mathbb{R }^{m\times n}$ to vector spaces of appropriate dimensions. Basis pursuit, matrix completion, robust principal component pursuit (PCP), and stable PCP problems are all special cases of the composite norm minimization problem. Thus, FALC is able to solve all these problems in a unified manner. We show that any limit point of FALC iterate sequence is an optimal solution of the composite norm minimization problem. We also show that for all $\epsilon >0$ , the FALC iterates are $\epsilon $ -feasible and $\epsilon $ -optimal after $\mathcal{O }(\log (\epsilon ^{-1}))$ iterations, which require $\mathcal{O }(\epsilon ^{-1})$ constrained shrinkage operations and Euclidean projection onto the set $\mathcal{Q }$ . Surprisingly, on the problem sets we tested, FALC required only $\mathcal{O }(\log (\epsilon ^{-1}))$ constrained shrinkage, instead of the $\mathcal{O }(\epsilon ^{-1})$ worst case bound, to compute an $\epsilon $ -feasible and $\epsilon $ -optimal solution. To best of our knowledge, FALC is the first algorithm with a known complexity bound that solves the stable PCP problem.  相似文献   

13.
Let ${\mathcal {P}_{n}^{d}}$ denote the space of polynomials on ? d of total degree n. In this work, we introduce the space of polynomials ${\mathcal {Q}_{2 n}^{d}}$ such that ${\mathcal {P}_{n}^{d}}\subset {\mathcal {Q}_{2 n}^{d}}\subset\mathcal{P}_{2n}^{d}$ and which satisfy the following statement: Let h be any fixed univariate even polynomial of degree n and $\mathcal{A}$ be a finite set in ? d . Then every polynomial P from the space  ${\mathcal {Q}_{2 n}^{d}}$ may be represented by a linear combination of radial basis functions of the form h(∥x+a∥), $a\in \mathcal{A}$ , if and only if the set $\mathcal{A}$ is a uniqueness set for the space  ${\mathcal {Q}_{2 n}^{d}}$ .  相似文献   

14.
We investigate the relation between the cone ${\mathcal{C}^{n}}$ of n × n copositive matrices and the approximating cone ${\mathcal{K}_{n}^{1}}$ introduced by Parrilo. While these cones are known to be equal for n ≤ 4, we show that for n ≥ 5 they are not equal. This result is based on the fact that ${\mathcal{K}_{n}^{1}}$ is not invariant under diagonal scaling. We show that for any copositive matrix which is not the sum of a nonnegative and a positive semidefinite matrix we can find a scaling which is not in ${\mathcal{K}_{n}^{1}}$ . In fact, we show that if all scaled versions of a matrix are contained in ${\mathcal{K}_{n}^{r}}$ for some fixed r, then the matrix must be in ${\mathcal{K}_{n}^{0}}$ . For the 5 × 5 case, we show the more surprising result that we can scale any copositive matrix X into ${\mathcal{K}_{5}^{1}}$ and in fact that any scaling D such that ${(DXD)_{ii} \in \{0,1\}}$ for all i yields ${DXD \in \mathcal{K}_{5}^{1}}$ . From this we are able to use the cone ${\mathcal{K}_{5}^{1}}$ to check if any order 5 matrix is copositive. Another consequence of this is a complete characterisation of ${\mathcal{C}^{5}}$ in terms of ${\mathcal{K}_{5}^{1}}$ . We end the paper by formulating several conjectures.  相似文献   

15.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

16.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

17.
We study the set ${\mathcal{X}}$ of split operators acting in the Hilbert space ${\mathcal{H}}$ : $$\mathcal{X}=\{T\in \mathcal{B}(\mathcal{H}): N(T)\cap R(T)=\{0\} \ {\rm and} \ N(T)+R(T)=\mathcal{H}\}.$$ Inside ${\mathcal{X}}$ , we consider the set ${\mathcal{Y}}$ : $$\mathcal{Y}=\{T\in\mathcal{X}: N(T)\perp R(T)\}.$$ Several characterizations of these sets are given. For instance ${T\in\mathcal{X}}$ if and only if there exists an oblique projection ${Q}$ whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. TS = ST, TST = T and STS = S). Analogous characterizations are given for ${\mathcal{Y}}$ . Two natural maps are considered: $${\bf q}:\mathcal{X} \to \mathbb{Q}:=\{{\rm oblique \ projections \ in} \, \mathcal{H} \}, \ {\bf q}(T)=P_{R(T)//N(T)}$$ and $${\bf p}:\mathcal{Y} \to \mathbb{P}:=\{{\rm orthogonal \ projections \ in} \ \mathcal{H} \}, \ {\bf p}(T)=P_{R(T)}, $$ where ${P_{R(T)//N(T)}}$ denotes the projection onto R(T) with nullspace N(T), and P R(T) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets ${\mathcal{X}_{c_k}\subset \mathcal{X}}$ of operators with rank ${k<\infty}$ , and ${\mathcal{X}_{F_k}\subset\mathcal{X}}$ of Fredholm operators with nullity ${k<\infty}$ . For the map p there are analogous results. We show that the interior of ${\mathcal{X}}$ is ${\mathcal{X}_{F_0}\cup\mathcal{X}_{F_1}}$ , and that ${\mathcal{X}_{c_k}}$ and ${\mathcal{X}_{F_k}}$ are arc-wise connected differentiable manifolds.  相似文献   

18.
A double line ${C \subset \mathbb{P}^3}$ is a connected divisor of type (2, 0) on a smooth quadric surface. Fix ${(a, c) \in \mathbb{N}^2\ \backslash\ \{(0, 0)\}}$ . Let ${X \subset \mathbb{P}^3}$ be a general disjoint union of a lines and c double lines. Then X has maximal rank, i.e. for each ${t \in \mathbb{Z}}$ either ${h^1(\mathcal{I}_X(t)) = 0}$ or ${h^0(\mathcal{I}_X(t)) = 0}$ .  相似文献   

19.
In the given article, enveloping C*-algebras of AJW-algebras are considered. Conditions are given, when the enveloping C*-algebra of an AJW-algebra is an AW*-algebra, and corresponding theorems are proved. In particular, we proved that if $\mathcal{A}$ is a real AW*-algebra, $\mathcal{A}_{sa}$ is the JC-algebra of all self-adjoint elements of $\mathcal{A}$ , $\mathcal{A}+i\mathcal{A}$ is an AW*-algebra and $\mathcal{A}\cap i\mathcal{A} = \{0\}$ then the enveloping C*-algebra $C^*(\mathcal{A}_{sa})$ of the JC-algebra $\mathcal{A}_{sa}$ is an AW*-algebra. Moreover, if $\mathcal{A}+i\mathcal{A}$ does not have nonzero direct summands of type I2, then $C^*(\mathcal{A}_{sa})$ coincides with the algebra $\mathcal{A}+i\mathcal{A}$ , i.e. $C^*(\mathcal{A}_{sa})= \mathcal{A}+i\mathcal{A}$ .  相似文献   

20.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号