首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At present, little information is available in the scientific literature related to the durability (weathering resistance) of fire-retarded wood and natural fiber-reinforced thermoplastics. In this work, thermoplastic profiles for façade applications based on high-density polyethylene, wheat straw particles, and fire-retardants were extruded and their reaction-to-fire performance before and after artificial weathering evaluated. Profile geometries were either solid or hollow-core profiles, and fire-retardants (FR) were added either in the co-extruded layer or in the bulk. Various FR for inclusion in the co-extruded layer were screened based on UL-94 tests. For profile extrusion, two types of FR were chosen: a coated intumescent combination based on ammonium polyphosphate (APP) and an APP coated with melamine and without formaldehyde. Before weathering, the peak heat release rate (pHRR) and the total heat release (THR), which were determined using cone calorimeter measurements, were reduced by up to 64% and 67% due to the FR. However, even before weathering, pHRR of the profiles was relatively high, with best (lowest) values between 230 and 250 kW/m2 under the test conditions. After 28 days of artificial weathering, changes in reaction-to-fire performance and color were evaluated. Use of the APP in the co-extruded layer worsened color change compared to the formulation without APP but the pHRR was not significantly changed. The influence of weathering on the fire behavior was small compared to the difference between fire-retarded and non-fire-retarded materials. Results from the cone calorimeter were analyzed with regard to ETAG 028, which provides requirements related to the durability of fire performance of building products. In many formulations, increase in THR was less than 20% compared to before weathering, which would place some of the profiles in class C or better (EN 13501-1). However, due to the high pHRR, at best, class D was obtained under the conditions of this study. In addition to cone calorimeter measurements, results from the single flame source test, limiting oxygen index determination and thermogravimetric analysis, are shown and discussed. Strength properties, water uptake and swelling of the profiles, thermal conductivity, and energy dispersive X-ray data are also presented.  相似文献   

2.
Tao  Zhenxiang  Yang  Rui  Li  Cong  Yao  Yina  Zhu  Pei  Zhang  Hui 《Journal of Thermal Analysis and Calorimetry》2018,132(3):1617-1628
A phosphorus-containing maleimide flame retardant (BDMP) was synthesized via the addition reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide and N,N′-bismaleimide-4,4′-diphenylmethane. The structure of BDMP was characterized by Fourier-transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance and elemental analysis. The thermal, flame-retardant and mechanical properties of the flame-retardant cyanate ester system were investigated by thermogravimetric analysis (TG), limiting oxygen index (LOI), vertical burning (UL-94), cone calorimeter test and dynamic mechanical analysis. The TG results indicated that the initial decomposition of modified CE resin shifted from 416 to 363 °C, and on the contrary, the char yield increased from 38.8 to 44.5%. The results of combustion tests indicated that the CE with highest phosphorus content acquired LOI value of 37% and achieved a UL-94 V-0 rating. The peak heat release rate, average heat release rate and average of effective heat combustion (av-EHC) of that group decreased by 39.5, 31.2 and 41.8%, respectively. In addition, the increase in phosphorus content led to a decrease in av-EHC and average CO2 yield, and an increase in average CO yield, indicating that BDMP led to an incomplete combustion of the modified CE system. The flame-retardant mechanism was investigated by TG–FTIR, scanning electron microscope and cone calorimeter. Last but not least, the dielectric constant of modified CE system showed a slight fluctuation from 2.96 to 3.02 at 1 GHz, which was lower than that of neat CE.  相似文献   

3.
Novel intumescent flame retardant polypropylene (PP) composites were prepared based on a char forming agent (CFA) and silica-gel microencapsulated ammonium polyphosphate (Si-MCAPP). The thermal and flame retardancy of flame retardant PP composites were investigated by limiting oxygen index, UL-94 test, cone calorimetry, thermogravimetric analysis, scanning electron micrograph, and water resistance test. The results of cone calorimetry show that the flame retardant properties of PP with 30 wt% novel intumescent flame retardants (CFA/Si-MCAPP = 1:3) improve greatly. The peak heat release rate and total heat release decrease, respectively, from 1,140.0 to 156.8 kW m?2 and from 96.0 to 29.5 MJ m?2. The PP composite with CFA/Si-MCAPP = 1:3 has the excellent water resistance, and it can still obtain a UL-94 V-0 rating after 168 h soaking in water.  相似文献   

4.
The synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate (MAPP) on the thermal and flame retardancy of polypropylene (PP) are investigated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and water resistance test. The results of cone calorimetry show that heat release rate peak (PHRR), total heat release (THR), and the mass loss of PP with 30 wt% intumescent flame retardant (IFR, CFA/MAPP = 1:2) decreases remarkably compared with that of pure PP. The HRR, THR, and mass loss decrease, respectively from 1140 to 100 kW/m2, from 96 to 16.8 MJ/m2, and from 100 to 40%. The PP composite with CFA/MAPP = 1:2 has the best water resistance, and it can still obtain a UL‐94 V‐0 rating after 168 hr soaking in water. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
An aryl polyphenylphosphonate, poly(9-oxa-10-(2,5-dihydro-xyphenyl) phospha-phenanthrene-10-oxide) phenylphosphonate (WLA-3), was used to prepare a flame-retardant poly(lactic acid) (PLA) by direct melt compounding. The thermal behaviour, burning behaviour and mechanical properties of the flame-retardant PLA systems have been investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), vertical burning test (UL-94), limiting oxygen index (LOI), cone calorimeter test (CCT) and tensile test. The flame retardance mechanism has been studied via Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and P content analysis. The UL-94 ratings of PLA’s containing 7phr (W7P) and 10phr (W10P) of WLA-3 were enhanced to V-0 from no rating for neat PLA. However, the cone calorimetry of flame-retardant PLA (W7P) only showed a little decrease in heat release rate (HRR), peak of heat release rate (PHRR) and total heat release (THR) compared to neat PLA. TGA results showed that the PLA containing different amounts of WLA-3 presented more complicated thermal decomposition behaviours than neat PLA. Additionally, the results from DSC and tensile tests showed that the addition of WLA-3 into PLA had a slight impact on the crystallization behaviours and tensile properties.  相似文献   

6.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

7.
A char forming agent and silica-gel microencapsulated APP were selected to form novel intumescent flame-retardant system (IFR) to prepare flame-retardant low-density polyethylene (LDPE) composites, and then the influence of zeolites on the thermal and flame-retardant properties of flame-retardant LDPE composites were studied. With the addition of 1 wt% zeolites to LDPE/IFR system, the LOI value increases from 29.0 to 34.0 %. The results of cone calorimetry show that the heat release rate peak and total heat release of the intumescent flame-retardant LDPE composite with 1 wt% zeolites decreases remarkably compared with that of without zeolites. The scanning electron microscopy indicates zeolites with suitable content can improve the quality of the char layer of flame-retardant LDPE composite which is more coherent and dense. The zeolites with the appropriate content can remarkably improve the flame-retardant properties of the LDPE composites.  相似文献   

8.
Novel intumescent flame-retardant poly(lactic acid) (PLA/IFR)/organo-modified α-zirconium phosphate(OZrP) nanocomposites were prepared via incorporation of charring agent (CA), ammonium polyphosphate (APP) and OZrP into PLA. OZrP was synthesized directly by a solvent thermal method. The morphological characterization of PLA/IFR/OZrP nanocomposites was conducted by wide angle X-ray diffraction (WXRD) and transmission electron microscopy (TEM). The effect of the OZrP on flame retardancy and the thermal stability of PLA/IFR composites were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test. The TGA data illustrated that the OZrP could increase the residue and significantly improve the flame retardancy of PLA/IFR/OZrP nanocomposites showing an excellent synergistic effect. The addition of OZrP to the flame-retardant PLA increases the LOI and enhances the UL-94 rating. Cone calorimeter tests gave clear evidence that the incorporation of OZrP into PLA/IFR composites resulted in the significant reduction of the heat release rate (HRR), low total heat release (THR) and high amount of char residues during combustion. The flame-retardant mechanism of PLA/IFR/OZrP nanocomposites may correspond to the intumescent flame-retardant mechanism and catalyzed carbonization mechanism caused by OZrP.  相似文献   

9.
It is mainly studied that the smoke-suppression properties and synergistic flame-retardant effect of hollow glass microsphere (HM) in flame retardant thermoplastic polyurethane (TPU) composites based on ammonium polyphosphate (APP) as a flame-retardant. Also, the smoke suppression properties and flame-retardant effect were investigated by smoke density test (SDT), cone calorimeter test (CCT), limiting oxygen index, and thermogravimetric analysis, separately. The char residues left after CCT were examined by scanning electron microscopy. The data of SDT shows that HM could effectively decrease smoke production of TPU composites. The results of CCT reveal that the system of APP/HM could reduce heat release rate, smoke production rate, and total smoke release. It is shown that APP/HM is a good system with smoke-suppression and synergistic flame-retardant properties in flame-retardant TPU composites.  相似文献   

10.
A char-forming agent (CFA) and silica-gel-microencapsulated ammonium polyphosphate (MCAPP) were selected to form novel intumescent flame retardant system (IFRs), and then the influence of this novel IFRs on the thermal and flame retardant properties of low-density polyethylene (LDPE) were studied. The results of cone calorimetry show that the flame retardant properties of LDPE with 30?wt% novel IFR (CFA/MCAPP?=?1:3) improve remarkably. The heat release rate peak, total heat release (THR) decreases, respectively, from 1479.6 to 273.5?kW?m?2 and from 108.0 to 80.5?MJ?m?2. The LDPE composite with CFA/MCAPP?=?1:3 has the excellent water resistance, and it can still obtain a UL-94?V-0 rating after treated with water at 70?°C for 168?h.  相似文献   

11.
The effectiveness of treatments for the surface layer of novel foam core particleboards was evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives, and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability, heat release rate profile, peak of heat release rate, total heat released, effective heat of combustion, mass loss rate, gaseous emissions, and specific extinction area were measured using the cone irradiance of 50 kW m?2. Additional analysis of this data provided fuel composition information that could reveal the pyrolysis events of the composite boards. Thermocouples at various depths were used to provide further verification of pyrolysis events. The unprotected foam core panels generally had much higher heat release rates, somewhat higher heat of combustion and much higher smoke production due to the polymeric foam component of tested panels, whereas time to ignition and total heat release were not pronounced from the veneer treated boards. Adding the commercial fire retardant veneer to the face particleboard provided a dramatic improvement to the measured flammability properties. It worked sufficiently well with a 3 mm thick surface layer to improve the predicted flame spread rating of the foam core particleboards.  相似文献   

12.
In this study, polyimide (PI) fabric was coated with montmorillonite (MMT) which performed as a kind of flame retardant. Thermogravimetric analysis showed that PI coated with MMT left as much as 69 % char after heating to 700 °C, about 15 % more than uncoated PI fabric. Cone calorimeter testing (heat flux: 60 kW m?2) showed that coated fabric reduced the total heat release and showed resistance to degradation from direct flame. Post-burn residues of samples were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. In addition, heat-insulting test showed that the temperature difference of coated PI could reach 400 °C after 10 min at 800 °C. These results demonstrate that MMT coating is relatively effective for improving flame-retardant behavior to PI fabric.  相似文献   

13.
This article evaluates the fire risk of petrol utilising a novel testing procedure that enables the measurement of heat release rate (HRR), specific mass loss rate and carbon monoxide (CO) yield of flammable liquids in a cone calorimeter. The testing procedure is a modification of the procedure described in ISO 5660-1:2002. The modification includes the use of a sample pool enabling the testing of flammable liquids. Pure petrol samples were tested. They were ignited with a spark igniter, without the use of a cone heater. The cone heater was removed before testing to avoid its heating by the flame and consequent heat radiation onto the tested sample surface. The average HRR was 612 kW m?2 and the maximum HRR was 842 kW m?2. The total CO yield related to mass loss was 58.6 g kg?1 and related to the effective heat of combustion was 1.48 g MJ?1. The immediate CO yield increased significantly with an increase in testing time (an increase in the depth level of liquid below the upper edge of the pool). Dependence equations of HRR and specific CO production rate (SCPR) on the specific mass loss rate were calculated from the obtained data. Substituting the specific mass loss rate of petrol (55 g m?2), which burns in an infinite diameter pool, the HRR (1,581 kW m?2) and SCPR (3.99 g m?2 s?1) were calculated for petrol pool fire under real conditions (at pool diameter larger than 1.5 m). The calculated SCPR accounted for a CO yield of 72.55 g kg?1.  相似文献   

14.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane (KH-602) and diphenylsilanediol through solution polycondesation and it was used together with potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) to prepare a flame-retardant system for polycarbonate (PC). The structure and thermal property of PSiN were characterized by Fourier transform infrared spectroscopy (FTIR), 1HNMR and thermogravimetric analysis (TG) tests. Flammability and thermal behaviors of PC/KSS/PSiN systems were estimated by limited oxygen index (LOI), cone calorimeter, vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and char residues of PC/KSS system were improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% KSS were incorporated, the LOI value of PC was found to be 46, and class V-0 of the UL-94 test. Moreover, both the heat release rate and the total heat release of PC/KSS/1 mass% PSiN decreased compared with those of PC and PC/KSS systems. The microstructures observed by scanning electron microscopy and FTIR indicated that the surface of the char for PC/KSS/PSiN system hold a more cohesive and denser char structure when compared with the pure PC and PC/KSS system.  相似文献   

15.
Organically modified montmorillonite (OMMT) was used as synergist to enhance the flame-retardant and mechanical properties of poly(butylene succinate)/intumescent flame retardant (PBS/IFR) composites. The flame-retardant, thermal degradation and combustion properties of PBS and its flame-retardant composites were characterized by limiting oxygen index (LOI) test, vertical burning (UL-94) test, thermogravimetric analysis, cone calorimeter and scanning electron microscopy, respectively. The results indicate that PBS/IFR composites exhibit excellent flame retardance when OMMT is at an appropriate content. PBS/IFR composite with 20 wt% IFR and 1.5 wt% OMMT has an LOI of 40.1% and can pass the UL-94 V0 rating. The synergistic effect between OMMT and IFR on the flame-retardant properties of PBS depends on the content of OMMT, and excessive OMMT diminish this synergistic effect. The possible flame-retardant mechanism of OMMT on PBS/IFR composite is proposed. The results of mechanical test also indicate that OMMT can effectively increase the notched impact strength of PBS/IFR composites.  相似文献   

16.
In this paper, a new type of flame retardant (AF‐Fe) based on para‐aramid fiber (AF) which was modified with iron diethyl phosphinate was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using cone calorimeter test, smoke density test, and thermogravimetric analysis/infrared spectrometry. The cone calorimeter test showed that AF‐Fe can greatly reduce the heat release rate, total heat release, smoke factor, and other parameters of TPU composites compared with the sample of TPU/AF. For example, the pHRR of the composite with 1.0 wt% AF‐Fe was reduced by 15.19% compared with the sample with the same content of pure AF. In addition, the smoke factor of TPU/AFFe3 was reduced by 50.52% and 15.63% compared with TPU0 and TPU/AF respectively. The results of smoke density test showed that the luminous flux of TPU/AFFe3 was increased by 79.26% compared with the sample of TPU/AF. The TG results revealed that the sample with TPU/AFFe3 had lower weight loss rate and higher char residue content at 700°C compared with the sample of TPU/AF.  相似文献   

17.
Poly(lactic acid)(PLA) composites with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide(DOPO) and DOPOcontaining polyhedral oligomeric silsesquioxane(DOPO-POSS) were prepared via melting extrusion and injection molding. The crystallization, mechanical, and flame-retardant properties of PLA/DOPO and PLA/DOPO-POSS were investigated by differential scanning calorimetry(DSC), X-ray diffraction(XRD), tensile testing, thermogravimetric analysis(TGA), limiting oxygen index(LOI),and cone calorimeter test. The DSC results showed that the DOPO added could act as a plasticizer as reflected by lower glass transition temperature and inhibited crystallization of part of the PLA; the DOPO-POSS acted like a filler in the PLA matrix and slightly improved the crystallinity of the PLA matrix. The XRD and DSC analyses indicated that the PLA composites by cold molding injection were amorphous, and the PLA composites following a heat treatment in an oven at 120 °C for 30 min achieved crystallinity. All the PLA and its composites after heat treatment had improved mechanical properties. The thermogravimetric analysis(TGA) tests showed that the PLA,DOPO and DOPO-POSS decomposed separately in the PLA/DOPO and PLA/DOPO-POSS, respectively. The cone calorimeter tests offered clear evidence that addition of the DOPO-POSS resulted in an evident reduction of 25% for the peak of heat release rate(p-HRR).It was also confirmed that the crystalline flame-retardant PLA composites after heat treatment had better flame retardant properties than the amorphous PLA composites prepared by the cold molding.  相似文献   

18.
The potential synergists aluminium diethylphosphinate (AlPi), boehmite (AlO(OH)) and melamine polyphosphate (MPP) were compared in flame-retardant epoxy resin (EP)/melamine poly(magnesium phosphate) (S600). The pyrolysis, the fire behaviour as well as the chemical interactions in the gas and condensed phases were investigated by various methods. Flammability was investigated by cone calorimeter and oxygen index (OI). The thermal and thermo-oxidative decomposition were studied by thermogravimetric analysis coupled with FTIR spectrometer. The special focus was on the investigation of structural changes in the condensed phase via solid-state NMR of 27Al and 31P nuclei. By the comparison of epoxy resin with only one additive or with S600 in combination with AlPi, AlO(OH) or MPP, it was possible to calculate the synergy index. The best performance in terms of fire behaviour was observed for EP/S600/MPP with a PHRR (peak heat release rate) of 208 kW m?2 due to slight synergy. In the case of THE (total heat evolved), clear synergy occurred for EP/S600/AlPi and EP/S600/AlO(OH). By solid-state NMR, different phosphates and aluminates were identified, indicating the chemical interactions between S600 and AlPi, AlO(OH) or MPP. The systematic multi-methodical approach yielded insight into the synergistic effects in the flame-retarded epoxy resin.  相似文献   

19.
采用极限氧指数仪和锥形量热仪测试了以六苯氧基环三磷腈(HPCP)阻燃环氧树脂的燃烧性能,结果显示,与纯环氧树脂相比,阻燃环氧树脂的极限氧指数值(LOI)明显提高、热释放速率峰值(pk-HRR)和总热释放量(THR)明显下降、环氧树脂的点燃时间提前以及分解速度加快.采用热失重(TGA)、热重红外联用(TGA-FTIR)、X射线光电子能谱(XPS)和热裂解气相色谱质谱联用(Py-GC/MS)研究了HPCP及其阻燃环氧树脂的热解路线和阻燃机理.结果表明,在阻燃环氧树脂过程中,一方面,HPCP分子中的苯氧基团首先解离并发生歧化反应,由此产生的苯氧基及其歧化产物的焠灭效应在环氧树脂中发挥气相阻燃作用,剩余的磷腈环和苯环基团会进一步裂解产生小分子碎片;另一方面,环氧树脂基体在HPCP的作用下提前分解,产生了基于双酚A结构的大分子碎片并在HPCP裂解产物作用下加速炭化,从而使更多的基体组分以残炭的形式被固定在凝聚相中,提高了阻燃环氧树脂的残炭产率,发挥了凝聚相阻燃作用.  相似文献   

20.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号