首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper, the set of quivers of semi-maximal rings is investigated. It is proved that the elements of this set are formed by the elements of the set of quivers of tiled orders and that the set of quivers of tiled orders with n vertices is determined by the integer points of a convex polyhedral domain that lie in the nonnegative part of the space . It is also proved that the set of quivers of tiled orders with n vertices contains all simple, oriented, strongly connected graphs with n vertices and n loops, does not contain any graphs with n vertices and n − 1 loops, and contains only a part of the graphs with n vertices and m (m < n − 1) loops. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 215–223, 2005.  相似文献   

2.
Given a function f : ℕ→ℝ, call an n-vertex graph f-connected if separating off k vertices requires the deletion of at least f(k) vertices whenever k≤(nf(k))/2. This is a common generalization of vertex connectivity (when f is constant) and expansion (when f is linear). We show that an f-connected graph contains a cycle of length linear in n if f is any linear function, contains a 1-factor and a 2-factor if f(k)≥2k+1, and contains a Hamilton cycle if f(k)≥2(k+1)2. We conjecture that linear growth of f suffices to imply hamiltonicity.  相似文献   

3.
An edge e of a k-connected graph G is said to be a removable edge if Ge is still k-connected, where Ge denotes the graph obtained from G by deleting e to get Ge, and for any end vertex of e with degree k − 1 in Ge, say x, delete x, and then add edges between any pair of non-adjacent vertices in N Ge (x). The existence of removable edges of k-connected graphs and some properties of 3-connected graphs and 4-connected graphs have been investigated. In the present paper, we investigate some properties of k-connected graphs and study the distribution of removable edges on a cycle in a k-connected graph (k ≥ 4).  相似文献   

4.
For a bipartite graph G on m and n vertices, respectively, in its vertices classes, and for integers s and t such that 2 ≤ st, 0 ≤ msnt, and m + n ≤ 2s + t − 1, we prove that if G has at least mn − (2(ms) + nt) edges then it contains a subdivision of the complete bipartite K (s,t) with s vertices in the m-class and t vertices in the n-class. Furthermore, we characterize the corresponding extremal bipartite graphs with mn − (2(ms) + nt + 1) edges for this topological Turan type problem.  相似文献   

5.
 A classical result of Wagner states that any two (unlabelled) planar triangulations with the same number of vertices can be transformed into each other by a finite sequence of diagonal flips. Recently Komuro gives a linear bound on the maximum number of diagonal flips needed for such a transformation. In this paper we show that any two labelled triangulations can be transformed into each other using at most O(nlogn) diagonal flips. We will also show that any planar triangulation with n>4 vertices has at least n− 2 flippable edges. Finally, we prove that if the minimum degree of a triangulation is at least 4, then it contains at least 2n + 3 flippable edges. These bounds can be achieved by an infinite class of triangulations. Received: June 3, 1998 Final version received: January 26, 2001  相似文献   

6.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

7.
In this paper, we prove that an m-connected graph G on n vertices has a spanning tree with at most k leaves (for k ≥ 2 and m ≥ 1) if every independent set of G with cardinality m + k contains at least one pair of vertices with degree sum at least nk + 1. This is a common generalization of results due to Broersma and Tuinstra and to Win.  相似文献   

8.
Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove several properties on longest cycles in almost claw-free graphs. In particular, we show the following two results.? (1) Every 2-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 2δ+4} and the bound 2δ+ 4 is best possible, thereby fully generalizing a result of Matthews and Sumner.? (2) Every 3-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 4δ}, thereby fully generalizing a result of MingChu Li. Received: September 17, 1996 Revised: September 22, 1998  相似文献   

9.
A k-tree of a graph is a spanning tree with maximum degree at most k. We give sufficient conditions for a graph G to have a k-tree with specified leaves: Let k,s, and n be integers such that k≥2, 0≤sk, and ns+1. Suppose that (1) G is (s+1)-connected and the degree sum of any k independent vertices of G is at least |G|+(k−1)s−1, or (2) G is n-connected and the independence number of G is at most (ns)(k−1)+1. Then for any s specified vertices of G, G has a k-tree containing them as leaves. We also discuss the sharpness of the results. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 15740077, 2005 This research was partially supported by the Japan Society for the Promotion of Science for Young Scientists.  相似文献   

10.
For every fixedk≥3 there exists a constantc k with the following property. LetH be ak-uniform,D-regular hypergraph onN vertices, in which no two edges contain more than one common vertex. Ifk>3 thenH contains a matching covering all vertices but at mostc k ND −1/(k−1). Ifk=3, thenH contains a matching covering all vertices but at mostc 3 ND −1/2ln3/2 D. This improves previous estimates and implies, for example, that any Steiner Triple System onN vertices contains a matching covering all vertices but at mostO(N 1/2ln3/2 N), improving results by various authors. Research supported in part by a USA-Israel BSF grant. Research supported in part by a USA-Israel BSF Grant.  相似文献   

11.
Let G be a 2-connected graph on n vertices with maximum degree k where n ≤ 3k - 2. We show that there is a cycle in G that contains all vertices of degree k. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Letf(n) denote the minimal number of edges of a 3-uniform hypergraphG=(V, E) onn vertices such that for every quadrupleYV there existsYeE. Turán conjectured thatf(3k)=k(k−1)(2k−1). We prove that if Turán’s conjecture is correct then there exist at least 2 k−2 non-isomorphic extremal hypergraphs on 3k vertices.  相似文献   

13.
 Let kn be positive integers. A finite, simple, undirected graph is called k-critically n-connected, or, briefly, an (n,k)-graph, if it is noncomplete and n-connected and the removal of any set X of at most k vertices results in a graph which is not (n−|X|+1)-connected. We present some new results on the number of vertices of an (n,k)-graph, depending on new estimations of the transversal number of a uniform hypergraph with a large independent edge set. Received: April 14, 2000 Final version received: May 8, 2001  相似文献   

14.
We give a simple proof for a theorem of Katchalski, Last, and Valtr, asserting that the maximum number of edges in a geometric graph G on n vertices with no pair of parallel edges is at most 2n−2. We also give a strengthening of this result in the case where G does not contain a cycle of length 4. In the latter case we show that G has at most 3/2(n−1) edges.  相似文献   

15.
We consider random graphs withn labelled vertices in which edges are chosen independently and with probabilityc/n. We prove that almost every random graph of this kind contains a path of length ≧(1 −α(c))n where α(c) is an exponentially decreasing function ofc. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

16.
Vertex Partitions of K4,4-Minor Free Graphs   总被引:2,自引:0,他引:2  
 We prove that a 4-connected K 4,4-minor free graph on n vertices has at most 4n−8 edges and we use this result to show that every K 4,4-minor free graph has vertex-arboricity at most 4. This improves the case (n,m)=(7,3) of the following conjecture of Woodall: the vertex set of a graph without a K n -minor and without a -minor can be partitioned in nm+1 subgraphs without a K m -minor and without a -minor. Received: January 7, 1998 Final version received: May 17, 1999  相似文献   

17.
An n-dimensional cube and the sphere inscribed into it are considered. The conjecture of A. Ben-Tal, A. Nemirovski, and C. Roos states that each tangent hyperplane to the sphere strictly separates not more than 2 n−2 cube vertices. In this paper this conjecture is proved for n ≤ 6. New examples of hyperplanes separating exactly 2 n−2 cube vertices are constructed for any n. It is proved that hyperplanes orthogonal to radius vectors of cube vertices separate less than 2 n−2 cube vertices for n ≥ 3.  相似文献   

18.
In 1990 G. T. Chen proved that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x) + d(y) ≥ 2n − 1 for each pair of nonadjacent vertices x, yV (G), then G is Hamiltonian. In this paper we prove that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x)+d(y) ≥ 2n−1 for each pair of nonadjacent vertices x, yV (G) such that d(x, y) = 2, then G is Hamiltonian.  相似文献   

19.
We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n )=O(188 n ). If the graph contains a triangle we can bound the integer coordinates by O(24.82n ). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n ). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte’s ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face.  相似文献   

20.
A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2). Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号