首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized water-dispersible CdTe quantum dots (QDs) capped with thioglycolic acid. Their quantum yield is higher than 54%. A sensitive electrochemiluminescence (ECL) method was established based on the modification of the composite of the QDs, carbon nanotubes and chitosan on indium tin oxide glass. The sensor displays efficient and stable anodic ECL which is quenched by dopamine. A respective sensor was designed that responds to dopamine linearly in the range of 50?pM to 10?nM, and the detection limit is 24?pM. Dopamine was determined with this sensor in spiked cerebro-spinal fluid with average recoveries of 95.7%.
Figure
The CdTe quantum dots have been synthesized and therefore developed an electrochemiluminescent sensor based on immobilizing its composite with carbon nanotubes and chitosan on indium tin oxide glass. The sensor responded toward dopamine linearly in the range of 50?pM to 10?nM with a detection limit of 24?pM.  相似文献   

2.
Liu X  Cheng L  Lei J  Ju H 《The Analyst》2008,133(9):1161-1163
Anodic electrochemiluminescence (ECL) of CdSe quantum dots (QDs) in a neutral system was for the first time observed at a relatively low potential by using sulfite as a co-reactant to produce the ECL emission at an indium tin oxide (ITO) electrode, which could be used for the sensitive detection of ECL quenchers using dopamine (DA) as a model molecule.  相似文献   

3.
Anodic electrochemiluminescence (ECL) of 3‐mercaptopropionic acid (MPA)‐ capped CdTe/CdS core‐shell quantum dots (QDs) with tripropylamine (TPrA) as the co‐reactant were studied in aqueous (Tris buffer) solution for the first time. The results suggest that the oxidation of TPrA at a glassy carbon electrode (GCE) surface participated in the ECL of QDs, and the onset potential and the intensity of ECL of CdTe/CdS QDs were affected seriously by TPrA, as the co‐reactant, in Tris buffer solution. The onset potential of ECL in this new system was about +0.5 V (vs. Ag/AgCl) and the ECL intensity greatly enhanced when TPrA was present. Various influencing factors, such as the electrolyte, pH, QDs concentration, potential range and scan rates on the ECL were studied. Based on the selective quenching by Cu2+ to the light emission from CdTe/CdS QDs/TPrA system, a highly sensitive and selective method for the determination of Cu2+ was developed. At the optimal conditions, the relative ECL intensity, I0/I, was proportional to the concentration of Cu2+ from 14 nM to 0.21 μM with the detection limit of 6.1 nM based on the signal‐to‐noise ratio of 3. The possible ECL mechanism of QDs and the quenching mechanism of ECL were proposed.  相似文献   

4.
利用巯基乙酸水热法合成出表面修饰—COOH的CdTe量子点,并将CdTe量子点(QDs)连接在Fe3O4纳米粒子表面,制备出CdTe/Fe3O4磁性量子点。通过磁力将磁性量子点修饰于石墨电极表面。在pH7.5的PBS缓冲溶液中,H2O2可使CdTe量子点产生电致化学发光,H2O2浓度在4~100μmol/L范围内与CdTe量子点的电致化学发光强度呈良好的线性关系,检出限为0.24μmol/L。据此建立了测定样品中过氧化氢含量的电致化学发光分析法,并成功地应用于李氏禾草汁原液中过氧化氢含量的测定。该研究借助纳米Fe3O4的磁力特征,使敏感膜易于形成和更新分离,简化了实验操作,同时起到增强发光强度的作用。  相似文献   

5.
For the first time, we report a sensitive and selective method to detect Cu2+ based on the electrochemiluminescence quenching of CdTe quantum dots (QDs) in aqueous solution. The mercaptosuccinic acid (MSA) protected CdTe QDs were prepared and characterized with UV, fluorescence and ECL. The anodic ECL quenching mechanism was attributed to the fact that MSA capping was removed from the surface of the CdTe QDs and preferentially bound with Cu2+. The displacement of MSA capping layer created imperfections on the CdTe QDs surface, and eventually led to the ECL quenching. The quenching effect of Cu2+ on the anodic ECL of CdTe QDs was found to be selective and concentration dependent, so we applied it to develop a method for the sensitive and selective detection of Cu2+. With the proposed method, the concentration of Cu2+ could be detected in the range of sub-nanomolar to micromolar levels.  相似文献   

6.
Cheng L  Deng S  Lei J  Ju H 《The Analyst》2012,137(1):140-144
A novel disposable solid-state electrochemiluminescent (ECL) biosensor was fabricated by immobilizing glucose oxidase and surface-unpassivated CdTe quantum dots (QDs) on a screen-printed carbon electrode (SPCE). The surface morphology of the biosensor was characterized with scanning electron microscopy and atomic force microscopy. With dissolved O(2) as an endogenous coreactant, QDs/SPCE showed strong ECL emission in pH 9.0 HCl-Tris buffer solution with low ECL peak potential at -0.89 V. The ECL intensity was twice that with hydrogen peroxide as coreactant at the same concentration. This phenomenon meant the ECL decreased upon consumption of dissolved O(2) and thus could be applied to the construction of oxidase-based ECL biosensors. With glucose oxidase as a model enzyme, the biosensor showed rapid response to glucose with a linear range of 0.8 to 100 μM and a detection limit of 0.3 μM. Further detection of glucose contained in human serum samples showed acceptable sensitivity and selectivity. This work provided a promising application of QDs in ECL-based disposable biosensors.  相似文献   

7.
We report on a highly sensitive and selective electrochemiluminescence (ECL) based method for the determination of pentachlorophenol (PCP). It is based on a new hybrid material composed of CdS quantum dots (QDs), graphene, and carbon nanotubes (CNTs), and uses peroxodisulfate as the coreactant. The use of this system results in a nearly 18-fold increase in ECL intensity. On interaction between PCP and the QDs, a decrease in ECL intensity is observed at PCP in a concentration as low as 1.0 pM and over a wide linear range (from 1.0 pM to 1.0 nM). The method is hardly affected by other chlorophenols and nitrophenols, and the electrode can be recycled.
Figure
?  相似文献   

8.
An electrochemiluminescence-based immunoassay using quantum dots (QDs) as labels for the carcinoembryonic antigen (CEA) was developed using an electrode modified with leafs of nanoporous gold. CEA was initially immobilized on the electrode via a sandwich immunoreaction, and then CdTe quantum dots capped with thioglycolic acid were used to label the second antibody. The intensity of the ECL of the QDs reflects the quantity of CEA immobilized on the electrode. Thus, in the presence of dithiopersulfate as the coreactant, the ECL serves as the signal for the determination of CEA. The intensity of the electroluminescence (ECL) of the electrode was about 5.5-fold higher than that obtained with a bare gold electrode. The relation between ECL intensity and CEA concentration is linear in the range from 0.05 to 200?ng.mL-1, and the detection limit is 0.01?ng.mL-1. The method has the advantages of high sensitivity, good reproducibility and long-term stability, and paves a new avenue for applying quantum dots in ECL-based bioassays.
Figure
Electrochemiluminescence Immunoassay Based on CdTe Quantun Dots as labels at Nanoporous Gold Leaf electrode  相似文献   

9.
In this study, a copolymer of luminol with aniline is electrochemically deposited onto the AuAg/TiO2 nanohybrid functionalized indium tin oxide coated glass. It is used as a reagentless electrochemiluminescent (ECL) electrode for flow‐injection‐analysis (FIA). The properties of this solid phase ECL electrode are characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy etc. It has stronger ECL emission, sensitive response for target analytes and excellent stability. The so‐prepared ECL electrode shows sensitive response to reactive oxygen species thereafter to be applied for determination of hydrogen peroxide with FIA mode. Under optimized conditions, a mass detection limit of 0.822 pg of hydrogen peroxide was obtained. Thus the hydrogen peroxide residues in samples were detected with satisfactory result.  相似文献   

10.
《Analytical letters》2012,45(18):2837-2847
Water-soluble CdTe quantum dots (QDs) were synthesized by using a 3-mercaptopropionic acid (MPA) capped method. Stable electrochemiluminescence (ECL) was obtained when the CdTe QDs were immobilized onto a glassy carbon electrode (GCE) by Layer-By-Layer (LBL) assembly of CdTe QDs and polydiallyldimethylam-monium chloride (PDDA) by using 2-(dibutylamino)-ethanol (DBAE) as a co-reactant. The ECL enhancement of CdTe QDs by the addition of silver(I) ions was also investigated. The maximum enhancement factor about 4 was obtained on a GCE in the presence and absence of the co-reactant. The enhancement was observed in phosphate-citric acid and phosphate buffer solutions (PBS), but not in borate buffer solution (BBS). This was newly formed Ag nanoparticles or silver(I) complex with large surface area and high catalytic activity in the phosphate-citric acid and phosphate buffer solutions, thus resulting in ECL enhancement.  相似文献   

11.
Zhang Y  Ge S  Wang S  Yan M  Yu J  Song X  Liu W 《The Analyst》2012,137(9):2176-2182
A novel electrochemiluminescence (ECL) immunosensor for sensitive detection of human chorionic gonadotrophin antigen (HCG-Ag) was constructed using CdTe quantum dot functionalized nanoporous PtRu alloys (QDs@PtRu) as labels for signal amplification. In this paper, nanoporous PtRu alloy was employed as the carrier for immobilization of CdTe QDs and antibodies. Primary monoclonal antibody to alfa-HCG antigen (McAb(1)) was immobilized onto the surface of chitosan coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)/CS MNPs) by glutaraldehyde (GA) as coupling agent. Then McAb(1) could be easily separated and assembled on the surface of indium tin oxide glass (ITO) owing to their excellent magnetic properties with external magnetic forces holding the MNPs. Due to signal amplification from the high loading of CdTe QDs, 4.67-fold enhancements in ECL signal for HCG-Ag detection was achieved compared to the unamplified method (single QDs as labels). Under optimal conditions, a wide detection range (0.005~50 ng mL(-1)) and low detection limit (0.8 pg mL(-1)) were achieved through the sandwich-type immunosensor. The novel immunosensor showed high sensitivity and selectivity, excellent stability, and good reproducibility, and thus has great potential for clinical detection of HCG-Ag. In particular, this approach presents a novel class of combining bifunctional nanomaterials with preferable ECL properties and excellent magnetism, which suggests considerable potential in a wide range of applications for bioassays.  相似文献   

12.
This work reported for the first time the use of flow injection electrochemiluminescence (FI-ECL) sensor for the determination of durabolin in an aqueous system based on CdTe quantum dot (QD) films. Aqueous CdTe colloidal solutions were prepared using thioglycolic acid as a capping agent. Zetasizer Nano ZS (Malvern, UK) was employed to characterize the size of CdTe QDs. The UV–vis and photoluminescence spectra of samples were systematically characterized. Indium tin oxide (ITO) slide glass was modified with CdTe QDs by layer-by-layer self-assembly. CdTe QD films were packed into a homemade cell and used as a recognizer of the FI-ECL sensor to determine durabolin. The intensive anodic ECL emission was obtained at a starting potential of +1.3 V (vs. Ag/AgCl) in a carbonate bicarbonate buffer solution with a pH of 9.93 at an ITO electrode. The ECL intensity was correlated linearly with the concentration of durabolin over the range of 1.0 × 10−8–1.0 × 10−5 g mL−1, and the detection limit was 2.5 × 10−9 g mL−1. The relative standard deviation for the determination of 1.0 × 10−6 g mL−1 durabolin was 1.04% (n = 11). This simple and sensitive sensor revealed good reproducibility for ECL analysis. As a result, the new FI-ECL sensor had been successfully applied to the determination of durabolin in food samples. This strategy could be easily realized and opened new avenues for the applications of QDs in ECL biosensing.  相似文献   

13.
A novel sandwich‐type electrochemiluminescence (ECL) immunosensor was developed to enable the sensitive detection of HIV‐1 antibodies. This system incorporated mesoporous silica (mSiO2) complexed with quantum dots (QDs) and nano‐gold particles, which were assembled to enhance signal detection. Magnetic beads were used by immobilizing the secondary anti‐IgG antibody. This was first employed to capture HIV‐1 antibody (Ab) to form a Fe3O4/anti‐IgG/Ab complex. A high loading and signal‐enhanced nanocomposite (hereafter referred to as Au‐mSiO2‐CdTe) was used as a HIV‐1 antigen label. The Au‐mSiO2‐CdTe nanocomposite was conjugated with the Fe3O4/anti‐IgG/Ab complex to form an immunocomplex (hereafter referred to as Fe3O4/anti‐IgG/Ab/HIV‐1/CdTe‐mSiO2‐Au). This complex could be further separated by an external magnetic field to produce ECL signals. Due to the large specific surface area and pore volume of mSiO2, the loading of the CdTe QDs was markedly increased. Thus, the loaded QDs released a powerful chemiluminescent signal with a concordantly increased sensitivity of the immunosensor. The immunosensor was highly sensitive, and displayed a linear range of responses for HIV‐1 antibody across a dilution range of 1 : 1500 through 1 : 50 with the detection limit of 1 : 4500. The immunoassay can be a promising candidate in early diagnosis of HIV infection.  相似文献   

14.
成功制备了由L-半胱氨酸和CdTe量子点作为修饰材料的电化学传感器并用于水体中Pb~(2+)的检测。巯基丙酸修饰的CdTe量子点通过水相合成,表面含有大量羧基,与L-半胱氨酸表面的氨基形成酰胺键,修饰于金电极表面。通过荧光分光光度计、透射电子显微镜、红外光谱、X射线衍射对L-Cys/CdTe QDs复合材料进行表征。采用循环伏安法(CV)研究了L-Cys/CdTe QDs修饰成分在金电极上的电化学性能及CdTe量子点的最佳自组装时间。采用差分脉冲溶出伏安法(DPSV)研究了铅离子在修饰电极上的电化学行为。在优化实验条件下,Pb~(2+)浓度在1.0×10~(-6)~1.0×10~(-2) mol/L范围内与其峰电流呈良好的线性关系,相关系数(r2)为0.993 8,检出限(3σ,n=5)为4.0×10~(-7) mol/L。该传感器具有良好的重现性和稳定性,有望用于实际水样中铅离子的检测。  相似文献   

15.
Lijuan Hua  Xueji Zhang 《Talanta》2009,77(5):1654-4893
Water-soluble CdTe quantum dots (QDs) with five sizes (2.25, 2.50, 2.77, 3.12, and 3.26 nm) were synthesized with the hydrothermal method. The electrochemiluminescence (ECL) of CdTe QDs was investigated in detail in air-saturated solution without adding foreign oxidant. It was found that the ECL of CdTe QDs displayed a size-dependent property. With the increasing in the particle size of the CdTe QDs, the ECL intensity was gradually increased, in addition, both ECL peak potentials and ECL onset potentials of CdTe QDs were shifted positively. Influences of some factors on the ECL intensity were investigated. Under the optimal conditions, the ECL intensity had a linear relationship with the concentration of l-cysteine (l-Cys) in the range from 1.3 × 10−6 to 3.5 × 10−5 mol L−1 (R2 0.996) with a detection limit of 8.7 × 10−7 mol L−1 (S/N = 3). The proposed method was applied to the determination of l-Cys in real samples with satisfactory results. Compared with previous reports, it has better selectivity for the determination of l-Cys.  相似文献   

16.
海洪  杨峰  李建平 《分析化学》2012,40(6):841-846
合成了Fe3O4@Au磁性纳米粒子,并根据单链寡聚核苷酸(ss-DNA)杂交原理,利用量子点电化学发光,构建了DNA电化学传感器.在磁控玻碳电极(MCGCE)表面,将5′-SH-ssDNA捕获探针自组装在Fe3O4@Au磁性纳米粒子上,然后与目标DNA互补的一端杂交形成dsDNA,再与双标记了量子点的5′-NH2-ssDNA-NH2-3′信号探针杂交形成三明治杂交的DNA.应用循环伏安法对DNA的固定与杂交进行了表征.目标DNA浓度在1.0×10-13~1.0×10-11 mol/L范围与其响应的ECL信号呈线性关系,检出限为1.8×10-14mol/L.由于采用量子点双标记法,检测的灵敏度显著提高.  相似文献   

17.
动态光散射技术用于氟离子的检测   总被引:1,自引:0,他引:1  
基于氢键取代作用, 氟离子可以降低巯基乙胺-CdTe量子点之间的团聚, 提高量子点的分散性, 使量子点的水合粒径随着氟离子浓度的增加而逐渐减小. 基于此, 本文发展了一种基于动态光散射(DLS)技术检测氟离子的方法, 其检出限为20 nmol/L, 与荧光方法和传统的氟离子选择性电极相比, 其检出限降低了约2个数量级.  相似文献   

18.
Bidentate chelation, meso‐2,3‐dimercaptosuccinic acid (DMSA), was used as a stabilizer for the synthesis of CdTe quantum dots (QDs). The bidentate chelate QDs, characterized with FT‐IR, PL, and UV/Vis spectroscopy; element analysis; and high‐resolution transmission electron microscope, exhibited surface traps due to the large surface/volume ratio of QD particle and the steric hindrance of the DMSA molecule. The unpassivated surface of the QDs produced a narrower band gap than the core and electrochemiluminescent (ECL) emission at relatively low cathodic potential. In air‐saturated pH 7.0 buffer, the QDs immobilized on electrode surface showed an intense ECL emission peak at ?0.85 V (vs. Ag/AgCl). H2O2 produced from electrochemical reduction of dissolved oxygen was demonstrated to be the co‐reactant, which avoided the need of strong oxidant as the co‐reactant and produced a sensitive analytical method for peroxidase‐related analytes. Using hydroquinone/horseradish peroxidase/H2O2 as a model system, a new, reagentless, phenolic, ECL biosensor for hydroquinone was constructed, based on the quenching effect of ECL emission of QDs by consumption of co‐reactant H2O2. The biosensor showed a linear range of 0.2–10 μM with acceptable stability and reproducibility. This work opens new avenues in the search for new ECL emitters with excellent analytical performance and makes QDs a more attractive alternative in biosensing.  相似文献   

19.
An electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of alpha fetoprotein (AFP) was fabricated using graphene-CdS quantum dots-alginate (G-CdS QDs-AL) as the immobilizing support and CdSe/ZnS QDs as the label. CdSe/ZnS QDs could effectively scavenge the ECL of G-CdS QDs-AL composite, and the quenched ECL intensity depended linearly on the logarithm for AFP concentration in the range from 0.05 to 500 fg/mL. The detection limit was 20 ag/mL. The proposed ECL immunoassay protocol for AFP detection is stable, specific, highly sensitive and promising for clinical application.  相似文献   

20.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号