首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the Expectation–Maximization algorithm. A suitable number of components is then determined conventionally by comparing different mixture models using penalized log-likelihood criteria such as Bayesian information criterion. We propose fitting MLMMs with variational methods, which can perform parameter estimation and model selection simultaneously. We describe a variational approximation for MLMMs where the variational lower bound is in closed form, allowing for fast evaluation and develop a novel variational greedy algorithm for model selection and learning of the mixture components. This approach handles algorithm initialization and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparameterize the model and show empirically that there is a gain in efficiency in variational algorithms similar to that in Markov chain Monte Carlo (MCMC) algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler, which suggests that reparameterizations can lead to improved convergence in variational algorithms just as in MCMC algorithms. Supplementary materials for the article are available online.  相似文献   

2.
In this paper, we develop a semi-parametric Bayesian estimation approach through the Dirichlet process (DP) mixture in fitting linear mixed models. The random-effects distribution is specified by introducing a multivariate skew-normal distribution as base for the Dirichlet process. The proposed approach efficiently deals with modeling issues in a wide range of non-normally distributed random effects. We adopt Gibbs sampling techniques to achieve the parameter estimates. A small simulation study is conducted to show that the proposed DP prior is better at the prediction of random effects. Two real data sets are analyzed and tested by several hypothetical models to illustrate the usefulness of the proposed approach.  相似文献   

3.
Predicting insurance losses is an eternal focus of actuarial science in the insurance sector. Due to the existence of complicated features such as skewness, heavy tail, and multi-modality, traditional parametric models are often inadequate to describe the distribution of losses, calling for a mature application of Bayesian methods. In this study we explore a Gaussian mixture model based on Dirichlet process priors. Using three automobile insurance datasets, we employ the probit stick-breaking method to incorporate the effect of covariates into the weight of the mixture component, improve its hierarchical structure, and propose a Bayesian nonparametric model that can identify the unique regression pattern of different samples. Moreover, an advanced updating algorithm of slice sampling is integrated to apply an improved approximation to the infinite mixture model. We compare our framework with four common regression techniques: three generalized linear models and a dependent Dirichlet process ANOVA model. The empirical results show that the proposed framework flexibly characterizes the actual loss distribution in the insurance datasets and demonstrates superior performance in the accuracy of data fitting and extrapolating predictions, thus greatly extending the application of Bayesian methods in the insurance sector.  相似文献   

4.
There is an increasingly rich literature about Bayesian nonparametric models for clustering functional observations. Most recent proposals rely on infinite-dimensional characterizations that might lead to overly complex cluster solutions. In addition, while prior knowledge about the functional shapes is typically available, its practical exploitation might be a difficult modeling task. Motivated by an application in e-commerce, we propose a novel enriched Dirichlet mixture model for functional data. Our proposal accommodates the incorporation of functional constraints while bounding the model complexity. We characterize the prior process through a urn scheme to clarify the underlying partition mechanism. These features lead to a very interpretable clustering method compared to available techniques. Moreover, we employ a variational Bayes approximation for tractable posterior inference to overcome computational bottlenecks.  相似文献   

5.
In this article, we propose a novel Bayesian nonparametric clustering algorithm based on a Dirichlet process mixture of Dirichlet distributions which have been shown to be very flexible for modeling proportional data. The idea is to let the number of mixture components increases as new data to cluster arrive in such a manner that the model selection problem (i.e. determination of the number of clusters) can be answered without recourse to classic selection criteria. Thus, the proposed model can be considered as an infinite Dirichlet mixture model. An expectation propagation inference framework is developed to learn this model by obtaining a full posterior distribution on its parameters. Within this learning framework, the model complexity and all the involved parameters are evaluated simultaneously. To show the practical relevance and efficiency of our model, we perform a detailed analysis using extensive simulations based on both synthetic and real data. In particular, real data are generated from three challenging applications namely images categorization, anomaly intrusion detection and videos summarization.  相似文献   

6.
This article describes posterior simulation methods for mixture models whose mixing distribution has a Normalized Random Measure prior. The methods use slice sampling ideas and introduce no truncation error. The approach can be easily applied to both homogeneous and nonhomogeneous Normalized Random Measures and allows the updating of the parameters of the random measure. The methods are illustrated on data examples using both Dirichlet and Normalized Generalized Gamma process priors. In particular, the methods are shown to be computationally competitive with previously developed samplers for Dirichlet process mixture models. Matlab code to implement these methods is available as supplemental material.  相似文献   

7.
A mixture approach to clustering is an important technique in cluster analysis. A mixture of multivariate multinomial distributions is usually used to analyze categorical data with latent class model. The parameter estimation is an important step for a mixture distribution. Described here are four approaches to estimating the parameters of a mixture of multivariate multinomial distributions. The first approach is an extended maximum likelihood (ML) method. The second approach is based on the well-known expectation maximization (EM) algorithm. The third approach is the classification maximum likelihood (CML) algorithm. In this paper, we propose a new approach using the so-called fuzzy class model and then create the fuzzy classification maximum likelihood (FCML) approach for categorical data. The accuracy, robustness and effectiveness of these four types of algorithms for estimating the parameters of multivariate binomial mixtures are compared using real empirical data and samples drawn from the multivariate binomial mixtures of two classes. The results show that the proposed FCML algorithm presents better accuracy, robustness and effectiveness. Overall, the FCML algorithm has the superiority over the ML, EM and CML algorithms. Thus, we recommend FCML as another good tool for estimating the parameters of mixture multivariate multinomial models.  相似文献   

8.
The majority of catalog allocation models using historical data ignore endogeneity of past catalog decisions. We investigate two alternative approaches which either impose a relationship between the number of catalogs allocated to a customer and customer-specific coefficients of the sales response function or use instrumental variables. Heterogeneity across customers is modeled by cluster effects following a nonparametric distribution derived from a Dirichlet process prior. Models are estimated by Markov chain Monte Carlo simulation methods and evaluated by cross-validation predictive densities. Models which consider endogeneity imply much lower effects for sending a higher number of catalogs. These models also lead to optimal allocations which differ strongly from optimal allocations obtained for models which ignore endogeneity. Higher values of both posterior model probabilities and model average profits suggest to allocate catalogs based on the instrumental variables approach.  相似文献   

9.
Clustering is one of the most widely used procedures in the analysis of microarray data, for example with the goal of discovering cancer subtypes based on observed heterogeneity of genetic marks between different tissues. It is well known that in such high-dimensional settings, the existence of many noise variables can overwhelm the few signals embedded in the high-dimensional space. We propose a novel Bayesian approach based on Dirichlet process with a sparsity prior that simultaneous performs variable selection and clustering, and also discover variables that only distinguish a subset of the cluster components. Unlike previous Bayesian formulations, we use Dirichlet process (DP) for both clustering of samples as well as for regularizing the high-dimensional mean/variance structure. To solve the computational challenge brought by this double usage of DP, we propose to make use of a sequential sampling scheme embedded within Markov chain Monte Carlo (MCMC) updates to improve the naive implementation of existing algorithms for DP mixture models. Our method is demonstrated on a simulation study and illustrated with the leukemia gene expression dataset.  相似文献   

10.
11.
Gaussian graphical models (GGMs) are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of GGMs extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous subgroups. In this article, we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable GGMs. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo (MCMC) algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the MCMC algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which MCMC algorithms are too slow to be practically useful.  相似文献   

12.
High-dimensional data with hundreds of thousands of observations are becoming commonplace in many disciplines. The analysis of such data poses many computational challenges, especially when the observations are correlated over time and/or across space. In this article, we propose flexible hierarchical regression models for analyzing such data that accommodate serial and/or spatial correlation. We address the computational challenges involved in fitting these models by adopting an approximate inference framework. We develop an online variational Bayes algorithm that works by incrementally reading the data into memory one portion at a time. The performance of the method is assessed through simulation studies. The methodology is applied to analyze signal intensity in MRI images of subjects with knee osteoarthritis, using data from the Osteoarthritis Initiative. Supplementary materials for this article are available online.  相似文献   

13.
Variational approximations provide fast, deterministic alternatives to Markov chain Monte Carlo for Bayesian inference on the parameters of complex, hierarchical models. Variational approximations are often limited in practicality in the absence of conjugate posterior distributions. Recent work has focused on the application of variational methods to models with only partial conjugacy, such as in semiparametric regression with heteroscedastic errors. Here, both the mean and log variance functions are modeled as smooth functions of covariates. For this problem, we derive a mean field variational approximation with an embedded Laplace approximation to account for the nonconjugate structure. Empirical results with simulated and real data show that our approximate method has significant computational advantages over traditional Markov chain Monte Carlo; in this case, a delayed rejection adaptive Metropolis algorithm. The variational approximation is much faster and eliminates the need for tuning parameter selection, achieves good fits for both the mean and log variance functions, and reasonably reflects the posterior uncertainty. We apply the methods to log-intensity data from a small angle X-ray scattering experiment, in which properly accounting for the smooth heteroscedasticity leads to significant improvements in posterior inference for key physical characteristics of an organic molecule.  相似文献   

14.
A finite mixture model has been used to fit the data from heterogeneous populations to many applications. An Expectation Maximization (EM) algorithm is the most popular method to estimate parameters in a finite mixture model. A Bayesian approach is another method for fitting a mixture model. However, the EM algorithm often converges to the local maximum regions, and it is sensitive to the choice of starting points. In the Bayesian approach, the Markov Chain Monte Carlo (MCMC) sometimes converges to the local mode and is difficult to move to another mode. Hence, in this paper we propose a new method to improve the limitation of EM algorithm so that the EM can estimate the parameters at the global maximum region and to develop a more effective Bayesian approach so that the MCMC chain moves from one mode to another more easily in the mixture model. Our approach is developed by using both simulated annealing (SA) and adaptive rejection metropolis sampling (ARMS). Although SA is a well-known approach for detecting distinct modes, the limitation of SA is the difficulty in choosing sequences of proper proposal distributions for a target distribution. Since ARMS uses a piecewise linear envelope function for a proposal distribution, we incorporate ARMS into an SA approach so that we can start a more proper proposal distribution and detect separate modes. As a result, we can detect the maximum region and estimate parameters for this global region. We refer to this approach as ARMS annealing. By putting together ARMS annealing with the EM algorithm and with the Bayesian approach, respectively, we have proposed two approaches: an EM-ARMS annealing algorithm and a Bayesian-ARMS annealing approach. We compare our two approaches with traditional EM algorithm alone and Bayesian approach alone using simulation, showing that our two approaches are comparable to each other but perform better than EM algorithm alone and Bayesian approach alone. Our two approaches detect the global maximum region well and estimate the parameters in this region. We demonstrate the advantage of our approaches using an example of the mixture of two Poisson regression models. This mixture model is used to analyze a survey data on the number of charitable donations.  相似文献   

15.
Variational approximations have the potential to scale Bayesian computations to large datasets and highly parameterized models. Gaussian approximations are popular, but can be computationally burdensome when an unrestricted covariance matrix is employed and the dimension of the model parameter is high. To circumvent this problem, we consider a factor covariance structure as a parsimonious representation. General stochastic gradient ascent methods are described for efficient implementation, with gradient estimates obtained using the so-called “reparameterization trick.” The end result is a flexible and efficient approach to high-dimensional Gaussian variational approximation. We illustrate using robust P-spline regression and logistic regression models. For the latter, we consider eight real datasets, including datasets with many more covariates than observations, and another with mixed effects. In all cases, our variational method provides fast and accurate estimates. Supplementary material for this article is available online.  相似文献   

16.
Variational Bayesian Generative Topographic Mapping   总被引:1,自引:0,他引:1  
General finite mixture models are powerful tools for the density-based grouping of multivariate i.i.d. data, but they lack data visualization capabilities, which reduces their practical applicability to real-world problems. Generative topographic mapping (GTM) was originally formulated as a constrained mixture of distributions in order to provide simultaneous visualization and clustering of multivariate data. In its inception, the adaptive parameters were determined by maximum likelihood (ML), using the expectation-maximization (EM) algorithm. The original GTM is, therefore, prone to data overfitting unless a regularization mechanism is included. In this paper, we define an alternative variational formulation of GTM that provides a full Bayesian treatment to a Gaussian process (GP)-based variation of the model. The generalization capabilities of the proposed Variational Bayesian GTM are assessed in some detail and compared with those of alternative GTM regularization approaches in terms of test log-likelihood, using several artificial and real datasets.  相似文献   

17.
Regression density estimation is the problem of flexibly estimating a response distribution as a function of covariates. An important approach to regression density estimation uses finite mixture models and our article considers flexible mixtures of heteroscedastic regression (MHR) models where the response distribution is a normal mixture, with the component means, variances, and mixture weights all varying as a function of covariates. Our article develops fast variational approximation (VA) methods for inference. Our motivation is that alternative computationally intensive Markov chain Monte Carlo (MCMC) methods for fitting mixture models are difficult to apply when it is desired to fit models repeatedly in exploratory analysis and model choice. Our article makes three contributions. First, a VA for MHR models is described where the variational lower bound is in closed form. Second, the basic approximation can be improved by using stochastic approximation (SA) methods to perturb the initial solution to attain higher accuracy. Third, the advantages of our approach for model choice and evaluation compared with MCMC-based approaches are illustrated. These advantages are particularly compelling for time series data where repeated refitting for one-step-ahead prediction in model choice and diagnostics and in rolling-window computations is very common. Supplementary materials for the article are available online.  相似文献   

18.
The article is concerned with the use of Markov chain Monte Carlo methods for posterior sampling in Bayesian nonparametric mixture models.In particular, we consider the problem of slice sampling mixture models for a large class of mixing measures generalizing the celebrated Dirichlet process. Such a class of measures, known in the literature as σ-stable Poisson-Kingman models, includes as special cases most of the discrete priors currently known in Bayesian nonparametrics, for example, the two-parameter Poisson-Dirichlet process and the normalized generalized Gamma process. The proposed approach is illustrated on some simulated data examples. This article has online supplementary material.  相似文献   

19.
Abstract

This article reviews Markov chain methods for sampling from the posterior distribution of a Dirichlet process mixture model and presents two new classes of methods. One new approach is to make Metropolis—Hastings updates of the indicators specifying which mixture component is associated with each observation, perhaps supplemented with a partial form of Gibbs sampling. The other new approach extends Gibbs sampling for these indicators by using a set of auxiliary parameters. These methods are simple to implement and are more efficient than previous ways of handling general Dirichlet process mixture models with non-conjugate priors.  相似文献   

20.
Using a direct variational approach with no global growth conditions on the nonlinear term, we consider the existence of solutions and their dependence on a functional parameter for the fourth order Dirichlet problem connected with the elastic beam equation. We investigate also the existence of an optimal process for such an optimal control problem in which the dynamics is described by the beam equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号