首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A guided-ion beam tandem mass spectrometer is used to study the reactions of Pt(+) with methane, PtCH(2)(+) with H(2) and D(2), and collision-induced dissociation of PtCH(4)(+) and PtCH(2)(+) with Xe. These studies experimentally probe the potential energy surface for the activation of methane by Pt(+). For the reaction of Pt(+) with methane, dehydrogenation to form PtCH(2)(+) + H(2) is exothermic, efficient, and the only process observed at low energies. PtH(+), formed in a simple C-H bond cleavage, dominates the product spectrum at high energies. The observation of a PtH(2)(+) product provides evidence that methane activation proceeds via a (H)(2)PtCH(2)(+) intermediate. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies in eV (kJ/mol) of D(0)(Pt(+)-H) = 2.81 +/- 0.05 (271 +/- 5), D(0)(Pt(+)-2H) = 6.00 +/- 0.12 (579 +/- 12), D(0)(Pt(+)-C) = 5.43 +/- 0.05 (524 +/- 5), D(0)(Pt(+)-CH) = 5.56 +/- 0.10 (536 +/- 10), and D(0)(Pt(+)-CH(3)) = 2.67 +/- 0.08 (258 +/- 8). D(0)(Pt(+)-CH(2)) = 4.80 +/- 0.03 eV (463 +/- 3 kJ/mol) is determined by measuring the forward and reverse reaction rates for Pt(+) + CH(4) right harpoon over left harpoon PtCH(2)(+) + H(2) at thermal energy. We find extensive hydrogen scrambling in the reaction of PtCH(2)(+) with D(2). Collision-induced dissociation (CID) of PtCH(4)(+), identified as the H-Pt(+)-CH(3) intermediate, with Xe reveals a bond energy of 1.77 +/- 0.08 eV (171 +/- 8 kJ/mol) relative to Pt(+) + CH(4). The experimental thermochemistry is favorably compared with density functional theory calculations (B3LYP using several basis sets), which also establish the electronic structures of these species and provide insight into the reaction mechanism. Results for the reaction of Pt(+) with methane are compared with those for the analogous palladium system and the differences in reactivity and mechanism are discussed.  相似文献   

2.
The dehydrogenation reaction mechanisms of methane catalyzed by transition-metal clusters PtM(+) (M = Cu, Ag, Au) and Pt(n)(+) (n = 2-4) have been investigated theoretically. In the reactions of PtM(+) (M = Cu, Ag, Au) with CH(4), cleavage of the first C-H bond is quite facile without barrier. The second C-H bond activation and the release of H(2) from molecular complex are generally the rate-determining steps. In the reactions of platinum clusters Pt(n)()(+) (n = 2-4) with CH(4), the H(2) elimination from the dihydrogen complex is the rate-determining step. Spin crossover may occur in the reaction of Pt(2)(+) and CH(4). Pt(2)(+) and Pt(3)(+) can dehydrogenate methane efficiently due to remarkable thermodynamic stability of the products. The dehydrogenation of methane induced by Pt(4)(+) is less favored thermodynamically than Pt(n)()(+) (n = 1, 2, 3). On the basis of theoretical analyses, the differences in reactivity among the clusters and the nature of cooperative effect of the bimetallic cluster have been discussed. The calculated results provide a reasonable basis for understanding of experimental observations.  相似文献   

3.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

4.
Multistage mass spectrometry (MS(n)) experiments reveal that gas phase silver iodide cluster cations, Ag(n)I(m)(+), are readily built up in a stepwise fashion via ion-molecule reactions between mass selected silver (Ag(3)(+) and Ag(5)(+)) or silver hydride (Ag(2)H(+) and Ag(4)H(+)) cluster cations and allyl iodide, in contrast to their reactions with methyl iodide, which solely result in ligation of the clusters. The stoichiometries of these clusters range from 1 < or = n < or = 5 and 1 < or = m < or = 4, indicating the formation of several new subvalent silver iodide clusters. Collision induced dissociation (CID) experiments were carried out on each of these clusters to shed some light on their possible structures. The products arising from CID of the Ag(n)I(m)(+) clusters are highly dependent on the stoichiometry of the cluster. Thus the odd-electron clusters Ag(4)I(2)(+) and Ag(5)I(+) fragment via loss of a silver atom. In contrast, the even-electron cluster ions all fragment via loss of AgI. In addition, Ag(2)I(2) loss is observed for the Ag(4)I(3)(+) and Ag(5)I(2)(+) clusters, while loss of Ag(3)I(3) occurs for the stoichiometric Ag(5)I(4)(+) cluster. DFT calculations were carried out on these Ag(n)I(m)(+) clusters as well as the neutrals associated with the ion-molecule and CID reactions. A range of different isomeric structures were calculated and their structures are described. A noteworthy aspect is that ligation of these silver clusters by I can have a profound effect on the geometry of the silver cluster. For example, D(3h) Ag(3)(+) becomes C(2v) Ag(3)I(+), which in turn becomes C(2h) Ag(3)I(2)(+). Finally, the DFT predicted thermochemistry supports the different types of reaction channels observed in the ion-molecule reactions and CID experiments.  相似文献   

5.
Yttrium- and lanthanum-carbide cluster cations YC(n)(+) and LaC(n)(+) (n = 2, 4, and 6) are generated by laser ablation of carbonaceous material containing Y(2)O(3) or La(2)O(3). YC(2)(+), YC(4)(+), LaC(2)(+), LaC(4)(+), and LaC(6)(+) are selected to undergo gas-phase ion-molecule reactions with benzene and cyclohexane. The FTICR mass spectrometry study shows that the reactions of YC(2)(+) and LaC(2)(+) with benzene produce three main series of cluster ions. They are in the form of M(C(6)H(4))(C(6)H(6))(n)(+), M(C(8)H(4))(C(6)H(6))(n)(+), and M(C(8)H(6))(C(6)H(6))(m)(+) (M = Y and La; n = 0-3; m = 0-2). For YC(4)(+), LaC(4)(+), and LaC(6)(+), benzene addition products in the form of MC(n)(C(6)H(6))(m)(+) (M = Y and La; n = 4, 6; m = 1, 2) are observed. In the reaction with cyclohexane, all the metal-carbide cluster ions are observed to form metal-benzene complexes M(C(6)H(6))(n)(+) (M = Y and La; n= 1-3). Collision-induced-dissociation experiments were performed on the major reaction product ions, and the different levels of energy required for the fragmentation suggest that both covalent bonding and weak electrostatic interaction exist in these organometallic complexes. Several major product ions were calculated using DFT theory, and their ground-state geometries and energies were obtained.  相似文献   

6.
A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed also with reference to available thermochemical data and relevant literature reports. The effects on both positive and negative APCI spectra due to ion activation via increasing V(cone) are also reported and discussed: several interesting endothermic processes are observed under these conditions. The results provide important information on the role of ionic reactions in non-thermal plasma processes.  相似文献   

7.
The C-H activation of toluene and p-xylene at cationic Pt(II) diimine complexes (N-N)Pt(CH(3))(H(2)O)(+)BF(4)(-) (N-N = Ar-N=CMe-CMe=N-Ar; 1(BF(4)(-)), N(f)-N(f), Ar = 3,5-(CF(3))(2)C(6)H(3)); 2(BF(4)(-)), N'-N', Ar = 2,6-(CH(3))(2)C(6)H(3)) has been investigated. The reactions were performed at ambient temperature in 2,2,2-trifluoroethanol (TFE), and after complete conversion of the starting material to mixtures of Pt-aryl/Pt-benzyl complexes and methane, acetonitrile was added to trap the products as more stable acetonitrile adducts. In the reactions with toluene, the relative amounts of products resulting from aromatic C-H activation were found to decrease in the order (N-N)Pt(m-tolyl)(NCMe)(+) > (N-N)Pt(p-tolyl)(NCMe)(+) > (N-N)Pt(o-tolyl)(NCMe)(+) for both 1 and 2. Unlike the reaction at 1, significant amounts of the benzylic activation product (N'-N')Pt(benzyl)(NCMe)(+) were concurrently formed in the C-H activation of toluene at 2. The C-H activation of p-xylene revealed an even more remarkable difference between 1 and 2. Here, the product ratios of (N-N)Pt(xylyl)(NCMe)(+) and (N-N)Pt(p-methylbenzyl)(NCMe)(+) were found to be 90:10 and 7:93 for reactions at 1 and 2, respectively. The elimination of toluene from (N(f)-N(f))Pt(Tol)(2) species (3a-c; a, Tol = o-tolyl; b, Tol = m-tolyl; c, Tol = p-tolyl) after protonolysis with 1 equiv of HBF(4) was investigated. Most notably, protonation in neat TFE followed by addition of acetonitrile gave a 77:23 mixture of (N(f)-N(f))Pt(m-tolyl)(NCMe)(+) (4b) and (N(f)-N(f))Pt(p-tolyl)(NCMe)(+) (4c) from all three isomeric bis(tolyl) complexes 3a-c. The presence of acetonitrile during the protonation reactions resulted in considerably less isomerization. This behavior is explained by an associative mechanism for the product-determining displacement of toluene by the solvent. For the C-H activation reactions, our findings suggest the existence of a dynamic equilibrium between the isomeric intermediates (N-N)Pt(aryl)(CH(4))(+) (aryl = tolyl/benzyl from 1; xylyl/p-methylbenzyl from 2). The observed selectivities might then be explained by steric and electronic effects in the pentacoordinate transition-state structures for the solvent-induced associative elimination of methane from these intermediates.  相似文献   

8.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

9.
Reactions of trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2PtCl (1; m' = a, 6; b, 7; c, 8; d, 9; e, 10) and H(CC)2H (HNEt2, cat. CuI) give trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)2H (3a-e, 80-95%). Oxidative homocouplings of 3a-d under Hay conditions (O2, cat. CuCl/TMEDA, acetone) yield trans,trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)4Pt(Ph2P(CH2)m'CH=CH2)2(C6F5) (4a-d, 64-84%). Treatment of 3c-e with excess HCCSiEt3 under Hay conditions gives trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)3SiEt3 (56-73%). Homocouplings (n-Bu4N+ F-, Me3SiCl, Hay conditions) afford trans,trans-(C6F5)(Ph2P(CH2)m'CH=CH2)2Pt(CC)6Pt(Ph2P(CH2)m'CH=CH2)2(C6F5) (13c-e, 59-64%). Reactions of 4a-d and 13c-e with Grubbs' catalyst, followed by hydrogenation, give mixtures of trans,trans-(C6F5)(Ph2P(CH2)mPPh2)Pt(CC)nPt(Ph2P(CH2)mPPh2)(C6F5) with termini-spanning diphosphines and trans,trans-(C6F5)(Ph2P(CH2)mPPh2)Pt(CC)nPt(Ph2P(CH2)mPPh2)(C6F5) with trans-spanning diphosphines (m = 2m' + 2; n = 4, 6). The latter (n = 4) are independently synthesized by similar metatheses/hydrogenations of 1a-d to give trans-(C6F5)(Ph2P(CH2)mPPh2)PtCl (49-59%), followed by analogous introductions of (CC)4 chains (66-77%). Crystal structures of complexes with termini-spanning diphosphines show sp3 chains with both double-helical (m/n = 20/4) and nonhelical (m/n = 20/6) conformations, and highly shielded sp chains. The sp3 chains of complexes with trans-spanning diphosphines exhibit double half-clamshell conformations. The dynamic properties of both classes of molecules are analyzed in detail.  相似文献   

10.
We study how the degree of fluorine substitution for hydrogen atoms in ethene affects its reactivity in the gas phase. The reactions of a series of small fluorocarbon cations (CF(+), CF(2)(+), CF(3)(+), and C(2)F(4)(+)) with ethene (C(2)H(4)), monofluoroethene (C(2)H(3)F), 1,1-difluoroethene (CH(2)CF(2)), and trifluoroethene (C(2)HF(3)) have been studied in a selected ion flow tube. Rate coefficients and product cations with their branching ratios were determined at 298 K. Because the recombination energy of CF(2)(+) exceeds the ionization energy of all four substituted ethenes, the reactions of this ion produce predominantly the products of nondissociative charge transfer. With their lower recombination energies, charge transfer in the reactions of CF(+), CF(3)(+), and C(2)F(4)(+) is always endothermic, so products can only be produced by reactions in which bonds form and break within a complex. The trends observed in the results of the reactions of CF(+) and CF(3)(+) may partially be explained by the changing value of the dipole moment of the three fluoroethenes, where the cation preferentially attacks the more nucleophilic part of the molecule. Reactions of CF(3)(+) and C(2)F(4)(+) are significantly slower than those of CF(+) and CF(2)(+), with adducts being formed with the former cations. The reactions of C(2)F(4)(+) with the four neutral titled molecules are complex, giving a range of products. All can be characterized by a common first step in the mechanism in which a four-carbon chain intermediate is formed. Thereafter, arrow-pushing mechanisms as used by organic chemists can explain a number of the different products. Using the stationary electron convention, an upper limit for Δ(f)H°(298)(C(3)F(2)H(3)(+), with structure CF(2)═CH-CH(2)(+)) of 628 kJ mol(-1) and a lower limit for Δ(f)H°(298)(C(2)F(2)H(+), with structure CF(2)═CH(+)) of 845 kJ mol(-1) are determined.  相似文献   

11.
We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ~1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ~3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that needs H∕D exchange.  相似文献   

12.
Product branching ratios (BRs) are reported for ion-molecule reactions of state-prepared nitrogen cation (N(2)(+)) with methane (CH(4)), acetylene (C(2)H(2)). and ethylene (C(2)H(4)) at low temperature using a modified ion imaging apparatus. These reactions are performed in a supersonic nozzle expansion characterized by a rotational temperature of 40 ± 5K. For the N(2)(+) + CH(4) reaction, a BR of 0.83:0.17 is obtained for the dissociative charge-transfer (CT) reaction that gives rise to the formation of CH(3)(+) and CH(2)(+) product ions, respectively. The N(2)(+) + C(2)H(2) ion-molecule reaction proceeds through a nondissociative CT process that results in the sole formation of C(2)H(2)(+) product ions. The reaction of N(2)(+) with C(2)H(4) leads to the formation of C(2)H(3)(+) and C(2)H(2)(+) product ions with a BR of 0.74:0.26, respectively. The reported BR for the N(2)(+) + C(2)H(4) reaction is supportive of a nonresonant dissociative CT mechanism similar to the one that accompanies the N(2)(+) + CH(4) reaction. No dependence of the branching ratios on N(2)(+) rotational level was observed. In addition to providing direct insight into the dynamics of the state-prepared N(2)(+) ion-molecule reactions with the target neutral hydrocarbon molecules, the reported low-temperature BRs are also important for accurate modeling of the nitrogen-dominated upper atmosphere of Saturn's moon, Titan.  相似文献   

13.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   

14.
We used the B3LYP flavor of density functional theory (DFT) to study the chemisorption of all CH(x) and C(2)H(y) intermediates on the Pt(111) surface. The surface was modeled with the 35 atom Pt(14.13.8) cluster, which was found to be reliable for describing all adsorption sites. We find that these hydrocarbons all bind covalently (sigma-bonds) to the surface, in agreement with the studies by Kua and Goddard on small Pt clusters. In nearly every case the structure of the adsorbed hydrocarbon achieves a saturated configuration in which each C is almost tetrahedral with the missing H atoms replaced by covalent bonds to the surface Pt atoms. Thus, (Pt(3))CH prefers a mu(3) hollow site (fcc), (Pt(2))CH(2) prefers a mu(2) bridge site, and PtCH(3) prefers mu(1) on-top sites. Vinyl leads to (Pt(2))CH-CH(2)(Pt), which prefers a mu(3) hollow site (fcc). The only exceptions to this model are ethynyl (CCH), which binds as (Pt(2))C=CH(Pt), retaining a CC pi-bond while binding at a mu(3) hollow site (fcc), and HCCH, which binds as (Pt)HC=CH(Pt), retaining a pi bond that coordinates to a third atom of a mu(3) hollow site (fcc) to form an off center structure. These structures are in good agreement with available experimental data. For all species we calculated heats of formation (DeltaH(f)) to be used for considering various reaction pathways on Pt(111). For conditions of low coverage, the most strongly bound CH(x) species is methylidyne (CH, BE = 146.61 kcal/mol), and ethylidyne (CCH(3), BE = 134.83 kcal/mol) among the C(2)H(y) molecules. We find that the net bond energy is nearly proportional to the number of C-Pt bonds (48.80 kcal/mol per bond) with the average bond energy decreasing slightly with the number of C ligands.  相似文献   

15.
A series of mononuclear cyclometalated benzo[h]quinolinate platinum and palladium(II) complexes with phosphine ligands, namely, [M(bzq)ClL] (L=PPh2H, Pt 1, Pd 2; PPh2CCPh, Pt 3, Pd 4), [Pt(bzq)(PPh2H)(PPh2CCPh)]ClO4 5, [Pt(bzq)(PPh2C(Ph)=C(H)PPh2)]ClO4 6, and [Pt(bzq)(CCPh)(PPh2CCPh)] (7a, 7b), were synthesized. The X-ray crystal structures of 1, 6.CH3COCH3.1/2CH3(CH2)4CH3, and 7b.CH3COCH3 have been determined. In 1, the metalated carbon atom and the P atom are mutually cis, whereas in 7b they are trans located. For complex 6, C and N are crystallographically indistinguishable. Reaction of [Pt(bzq)(mu-Cl)]2 with PPh2H and excess of NEt3 leads to the phosphide-bridge platinum dimer [Pt(bzq)(mu-PPh2)]2 8 (X-ray). Moderate pi-pi intermolecular interactions and no evident Pt-Pt interactions are found in 1, 7b, and in 8. All of the complexes exhibit absorption bands at high energy due to the intraligand transitions (1IL pi --> pi) and absorptions at lower energy which are attributed to MLCT (5d) pi --> pi (CLambdaN) transition. Platinum complexes show strong luminescence in both solid state and frozen solutions. The influence of the coligands on the photophysics of the platinum complexes has been examined by absorption and emission spectroscopy.  相似文献   

16.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

17.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

18.
The selected ion flow tube (SIFT) technique has been used to investigate the ion-molecule reactions of several ions with the neutral molecules ethylene oxide, CH(2)OCH(2)-c, and propenal, CH(2)CHCHO. Both molecules have been identified in hot-core star forming regions [] and have significance to astrochemical models of the interstellar (ISM) and circumstellar medium (CSM). Moreover, the molecules contain functional groups, such as the epoxide group (ethylene oxide) and an aldehyde group, which are part of a conjugated pi-electron system (propenal) whose reactivities have not been studied in detail in gas-phase ion-molecule reactions. The larger recombination energy ions, Ar(+) and N(2)(+), were reacted with the neutrals to give insight into general fragmentation tendencies. These reactions proceeded via dissociative charge-transfer yielding major fragmentation products of CH(3)(+) and HCO(+) for ethylene oxide and CH(2)CH(+) and HCO(+) for propenal. The amino acids glycine and alanine are of particular interest to astrobiology, especially if they can be synthesized in the gas phase. In an attempt to synthesize amino acid precursors, ethylene oxide and propenal were reacted with NH(n)(+) (n = 1-4) and HCNH(+). As might be expected from the proton detachment energies, NH(+), NH(2)(+), and HCNH(+) reacted via proton transfer. NH(3)(+) reacted with each molecule via H-atom abstraction to produce NH(4)(+), and NH(4)(+) reacted via a ternary association. All binary reactions proceeded near the gas kinetic rate. Several associated molecule switching reactions were performed and implications of these reactions to the structures of the association products are discussed Ikeda et al. and Hollis et al.  相似文献   

19.
The complex doublet potential energy surface for the ion-molecule reaction of HCN(+) with C(2)H(4) is investigated at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels. The initial association between HCN(+) and C(2)H(4) forms three energy-rich addition intermediates, 1 (HCNCH(2)CH(2)(+)), 2 (HC-cNCH(2)CH(2)(+)), and 3 (N-cCHCH(2)CH(2)(+)), which are predicted to undergo subsequent isomerization and decomposition steps. A total of nine kinds of dissociation products, including P(1) (HCN + C(2)H(4)(+)), P(2) (HCNCHCH(2)(+) + H), P(3) (NCCH(2) + CH(3)(+)), P(4) (CN + C(2)H(5)(+)), P(5) (NCCHCH(2)(+) + H(2)), P(6) (HNCCHCH(2)(+) + H), P(7) (c-CHCCH(2)N(+) + H(2)), P(8) (c-NHCCH(2)C(+) + H(2)), and P(9) (HNCCCH(+) + H(2) + H), are obtained. Among the nine products, P(1) is the most abundant product. P(2) is the second feasible product but is much less competitive than P(1). P(3), P(4), P(5), and P(6) may have the lowest yields observed. Other products, P(7), P(8), and P(9), may become feasible at high temperature. Because the intermediates and transition states involved in the most favorable pathway all lie below the reactant, the HCN(+) + C(2)H(4) reaction is expected to be rapid, which is confirmed by experiment. The present calculation results may provide a useful guide for understanding the mechanism of HCN(+) toward other unsaturated hydrocarbons.  相似文献   

20.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号