首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC-(IT)MS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane) (PDMS), poly(acrylate) (PA), Carboxen-poly(dimethylsiloxane) (CAR/PDMS), Carbowax-divinylbenzene (CW/DVB) and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 microm CAR/PDMS fibre during headspace extraction at 40 degrees C with stirring at 750 rpm for 60 min, after saturating the samples with salt. The optimised methodology was then applied to investigate the volatile composition profile of three Scotch whisky samples--Black Label, Ballantines and Highland Clan. Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with "fruity" odours. Qualitatively, the isoamyl acetate, with "banana" aroma, was the most interesting. Quantitatively, significant components are ethyl esters of caprilic, capric and lauric acids. The highest concentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.  相似文献   

2.
Pontes M  Marques JC  Câmara JS 《Talanta》2007,74(1):91-103
The volatile composition from four types of multifloral Portuguese (produced in Madeira Island) honeys was investigated by a suitable analytical procedure based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry detection (GC-qMS). The performance of five commercially available SPME fibres: 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); 75 μm carboxen/polydimethylsiloxane, CAR/PDMS, and 65 μm carbowax/divinylbenzene, CW/DVB; were evaluated and compared. The highest amounts of extract, in terms of the maximum signal obtained for the total volatile composition, were obtained with a DVB/CAR/PDMS coating fibre at 60 °C during an extraction time of 40 min with a constant stirring at 750 rpm, after saturating the sample with NaCl (30%). Using this methodology more than one hundred volatile compounds, belonging to different biosynthetic pathways were identified, including monoterpenols, C13-norisoprenoids, sesquiterpenes, higher alcohols, ethyl esters and fatty acids. The main components of the HS-SPME samples of honey were in average ethanol, hotrienol, benzeneacetaldehyde, furfural, trans-linalool oxide and 1,3-dihydroxy-2-propanone.  相似文献   

3.
In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC-qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex).An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC-qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples.The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.  相似文献   

4.
The aroma profile of cocoa products was investigated by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS). SPME fibers coated with 100 μm polydimethylsiloxane coating (PDMS), 65 μm polydimethylsiloxane/divinylbenzene coating (PDMS-DVB), 75 μm carboxen/polydimethylsiloxane coating (CAR-PDMS) and 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane on a StableFlex fiber (DVB/CAR-PDMS) were evaluated. Several extraction times and temperature conditions were also tested to achieve optimum recovery. Suspensions of the samples in distilled water or in brine (25% NaCl in distilled water) were investigated to examine their effect on the composition of the headspace. The SPME fiber coated with 50/30 μm DVB/CAR-PDMS afforded the highest extraction efficiency, particularly when the samples were extracted at 60 °C for 15 min under dry conditions with toluene as an internal standard. Forty-five compounds were extracted and tentatively identified, most of which have previously been reported as odor-active compounds. The method developed allows sensitive and representative analysis of cocoa products with high reproducibility. Further research is ongoing to study chocolate making processes using this method for the quantitative analysis of volatile compounds contributing to the flavor/odor profile.  相似文献   

5.
The on-fibre derivatisation of volatile fatty acids (VFAs) using N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was optimised in the simultaneous determination of VFAs together with phenols and indoles by headspace solid-phase microextraction (SPME)–gas chromatography–mass spectrometry. Firstly, the nature of the SPME fibre was optimised and four different fibres were studied (100 μm polydimethylsiloxane, 85 μm Carboxen/polydimethylsiloxane, 5/30 μm divinylbenzene/Carboxen/polydimethylsiloxane and 85 μm polyacrylate). The optimum fibre (50/30 μm divinylbenzene/Carboxen/polydimethylsiloxane) was used to study the exposure time of the fibre to the derivatisation agent and the desorption time and temperature. Firstly, a factorial design was built but since the three variables had a significant effect, a central composite design was used to build the response surfaces. The best signals were obtained after the exposure of the fibre in the headspace of the MTBSTFA derivatisation reagent for 1 h and desorption at 300 °C for 9 min. The determination of underivatised phenols and indoles was not affected by the presence of the derivatisation reagent in the fibre.  相似文献   

6.
Wang D  Wang Q  Zhang Z  Chen G 《The Analyst》2012,137(2):476-480
ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.  相似文献   

7.
Extraction of dry cured ham volatile compounds by solid-phase microextraction (SPME) was optimized. Different fiber coatings (carboxen/polydimethylsiloxane (CAR/PDMS), divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS), polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB)), times of extraction (15, 30, 60 min) and sample preparation (ground samples and homogenates with NaCl saturated solution) were assayed. CAR/PDMS and DVB/CAR/PDMS fiber coatings extracted more than 100 volatile compounds and showed the highest area counts for most volatile compounds. CAR/PDMS coating extracted better those compounds whose Kovats index (KI) was lower than 980 (on average) and DVB/CAR/PDMS those with higher KI. Fifteen minutes of extraction provided a volatile compound profile with lower area counts for most compounds and qualitatively different to that obtained with 30 and 60 min of extraction. Homogenates gave a different profile compared to ground samples, with lower total counts for most compounds but higher proportion of aldehydes, and presence of several compounds not found in ground samples.  相似文献   

8.
The analytical performance of three extraction procedures based on cold liquid–liquid extraction using dicloromethane (LLE), solid phase extraction (SPE) using a styrene–divinylbenzene copolymer and headspace solid phase microextraction (SPME) using a carboxen–polydimethylsiloxane coated fibre has been evaluated based on the analysis of 30 representative wine volatile compounds. From the comparison of the three procedures, LLE and SPE showed very good linearity covering a wide range of concentrations of wine volatile compounds, low detection limits, high recovery for most of the volatile compounds under study and higher sensitivity compared to the headspace-SPME procedure. The latter showed in general, poor recovery for polar volatile compounds. Despite some drawbacks associated with the LLE and SPE procedures such as the more tedious sampling treatment and the use of organic solvents, the analytical performance of both procedures showed that they are more adequate for the analysis of wine volatiles.  相似文献   

9.
The volatile aroma compounds in cooked pork were examined using solid-phase microextraction (SPME). Two SPME fibres coated with different stationary phases were used simultaneously to collect aroma compounds from the headspace above the pork. One fibre was coated with 75 microm. Carboxen-polydimethylsiloxane and the other was coated with 50/30 microm divinylbenzene-Carboxen on polydimethylsiloxane. After extraction, the two fibres were desorbed in the injection port of a gas chromatograph sequentially, so that the aroma compounds from both of the fibres could be analysed in one gas chromatogram. This procedure resulted in a chromatogram containing a more complete aroma profile for cooked pork than the chromatograms from either of the fibres on their own. Thirty-six compounds were identified in cooked pork for the first  相似文献   

10.
The emission of low molecular weight compounds from recycled high-impact polystyrene (HIPS) has been investigated using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). Four released target analytes (styrene, benzaldehyde, acetophenone, and 2-phenylpropanal) were selected for the optimisation of the HS-SPME sampling procedure, by analysing operating parameters such as type of SPME fibre (polarity and operating mechanism), particle size, extraction temperature and time. 26 different compounds were identified to be released at different temperatures from recycled HIPS, including residues of polymerisation, oxidated derivates of styrene, and additives. The type of SPME fibre employed in the sampling procedure affected the detection of emitted components. An adsorptive fibre such as carbowax/polydimethylsiloxane (CAR/PDMS fibre) offered good selectivity for both non-polar and polar volatile compounds at lower temperatures; higher temperatures result in interferences from less-volatile released compounds. An absorptive fibre as polydimethylsiloxane (PDMS) fibre is suitable for the detection of less-volatile non-polar molecules at higher temperatures. The nature and relative amount of the emitted compounds increased with higher exposure temperature and smaller polymeric particle size. HS-SPME proves to be a suitable technique for screening the emission of semi-volatile organic compounds (SVOCs) from polymeric materials; reliable quantification of the content of target analytes in recycled HIPS is however difficult due to the complex mass-transfer processes involved, matrix effects, and the difficulties in equilibrating the analytical system.  相似文献   

11.
Liseth Ferreira 《Talanta》2009,77(3):1087-1096
The analysis of volatile compounds in Funchal, Madeira, Mateus and Perry Vidal cultivars of Annona cherimola Mill. (cherimoya) was carried out by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry detection (GC-qMSD). HS-SPME technique was optimized in terms of fibre selection, extraction time, extraction temperature and sample amount to reach the best extraction efficiency. The best result was obtained with 2 g of sample, using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre for 30 min at 30 °C under constant magnetic stirring (800 rpm).After optimization of the extraction methodology, all the cherimoya samples were analysed with the best conditions that allowed to identify about 60 volatile compounds. The major compounds identified in the four cherimoya cultivars were methyl butanoate, butyl butanoate, 3-methylbutyl butanoate, 3-methylbutyl 3-methylbutanoate and 5-hydroxymethyl-2-furfural. These compounds represent 69.08 ± 5.22%, 56.56 ± 15.36%, 56.69 ± 9.28% and 71.82 ± 1.29% of the total volatiles for Funchal, Madeira, Mateus and Perry Vidal cultivars, respectively. This study showed that each cherimoya cultivars have 40 common compounds, corresponding to different chemical families, namely terpenes, esters, alcohols, fatty acids and carbonyl compounds and using PCA, the volatile composition in terms of average peak areas, provided a suitable tool to differentiate among the cherimoya cultivars.  相似文献   

12.
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima.The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.  相似文献   

13.
In this study, the experimental extraction conditions on applying headspace solid‐phase microextraction and cold fiber headspace solid‐phase microextraction (CF‐HS‐SPME) procedures to samples of six medicinal herbs commonly found in southern Brazil were optimized. The optimized conditions for headspace solid‐phase microextraction were found to be an extraction temperature of 60°C and extraction time of 40 min. For CF‐HS‐SPME, the corresponding values were 60°C and 15 min. In the case of the coating temperature for the CF‐HS‐SPME system, two approaches were investigated: (i) Temperature of 5°C applied during the whole extraction procedure; and (ii) the use of two fiber temperatures in the same extraction procedure with the aim of extracting the volatile and semivolatile compounds, the ideal condition being 60°C for the first 7.5 min and 5°C for the final 7.5 min. The three extraction procedures were compared. The CF‐HS‐SPME procedure had good performance only for the more volatile compounds whereas the strategy using two coating temperatures in the same procedure showed good performance for all compounds studied. It was also possible to determine the profile for the volatile fraction of each herb studied applying this technique followed by GC‐MS.  相似文献   

14.
The complex aroma of wine is derived from many sources, with grape-derived components being responsible for the varietal character. The ability to monitor grape aroma compounds would allow for better understanding of how vineyard practices and winemaking processes influence the final volatile composition of the wine. Here, we describe a procedure using GC–MS combined with headspace solid-phase microextraction (HS-SPME) for profiling the free volatile compounds in Cabernet Sauvignon grapes. Different sample preparation (SPME fiber type, extraction time, extraction temperature and dilution solvent) and GC–MS conditions were evaluated to optimize the method. For the final method, grape skins were homogenized with water and 8 ml of sample were placed in a 20 ml headspace vial with addition of NaCl; a polydimethylsiloxane SPME fiber was used for extraction at 40 °C for 30 min with continuous stirring. Using this method, 27 flavor compounds were monitored and used to profile the free volatile components in Cabernet Sauvignon grapes at different maturity levels. Ten compounds from the grapes, including 2-phenylethanol and β-damascenone, were also identified in the corresponding wines. Using this procedure it is possible to follow selected volatiles through the winemaking process.  相似文献   

15.
The establishment of geographic origin chemical biomarkers for the marine salt might represent an important improvement to its valorisation. Volatile compounds of marine salt, although never studied, are potential candidates. Thus, the purpose of this work was the development of a headspace solid phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (HS-SPME/GC-qMS) methodology to study the volatile composition of marine salt. A 65 μm carbowax/divinylbenzene SPME coating fibre was used. Three SPME parameters were optimised: extraction temperature, sample quantity, and presentation mode. An extraction temperature of 60 °C and 16 g of marine salt in a 120 mL glass vial were selected. The study of the effect of sample presentation mode showed that the analysis of an aqueous solution saturated with marine salt allowed higher extraction efficiency than the direct analysis of salt crystals. The dissolution of the salt in water and the consequent effect of salting-out promote the release of the volatile compounds to the headspace, enhancing the sensitivity of SPME for the marine salt volatiles. The optimised methodology was applied to real matrices of marine salt from different geographical origins (Portugal, France, and Cape Verde). The marine salt samples contain ca. 40 volatile compounds, distributed by the chemical groups of hydrocarbons, alcohols, phenols, aldehydes, ketones, esters, terpenoids, and norisoprenoids. These compounds seem to arise from three main sources: algae, surrounding bacterial community, and environment pollution. Since these volatile compounds can provide information about the geographic origin and saltpans environment, this study shows that they can be used as chemical biomarkers of marine salt.  相似文献   

16.
Headspace solid-phase microextraction (SPME) was studied as a possible alternative to liquid-liquid extraction for the analysis of haloacetic acids (HAAs) in water. The method involves derivatization of the acids to their ethyl esters using sulphuric acid and ethanol after evaporation, followed by headspace SPME with a polydimethylsiloxane fibre and gas chromatography-ion trap mass spectrometry (GC-IT-MS). The derivatization procedure was optimized: maximum sensitivity was obtained with esterification for 10 min at 50 degrees C in 30 microl of sulphuric acid and 40 microl of ethanol. The headspace SPME conditions were also optimized and good sensitivity was obtained at a sampling temperature of 25 degrees C, an absorption time of 10 min, the addition of 0.1 g of anhydrous sodium sulfate and a desorption time of 2 min. Good precision (RSD lower than 10%) and detection limits in the ng l(-1) range (from 10 to 200 ng l(-1)) were obtained for all the compounds. The optimized procedure was applied to the analysis of HAAs in tap water and the results obtained by standard addition agreed with those of EPA method 552.2, whereas discrepancies due to matrix interferences were observed using external calibration. Consequently, headspace SPME-GC-IT-MS with standard addition is recommended for the analysis of these compounds in drinking water.  相似文献   

17.
Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.  相似文献   

18.
Solid-phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which eliminates the need for solvents or complicated apparatus, for concentrating volatile or nonvolatile compounds in liquid samples or headspace. SPME is compatible with analyte separation and detection by gas chromatography and high-performance liquid chromatography, and provides linear results for wide concentrations of analytes. By controlling the polarity and thickness of the coating on the fibre, maintaining consistent sampling time, and adjusting other extraction parameters, an analyst can ensure highly consistent, quantifiable results for low concentration analytes. To date, about 400 articles on SPME have been published in different fields, including environment (water, soil, air), food, natural products, pharmaceuticals, biology, toxicology, forensics and theory. As the scope of SPME grew, new improvements were made with the appearance of new coatings that allowed an increase in the specificity of this extraction technique. The key part of the SPME fibre is of course the fibre coating. At the moment, 27 variations of fibre coating and size are available. Among the newest are a fibre assembly with a dual coating of divinylbenzene and Carboxen suspended in poly(dimethylsiloxane), and a series of 23 gauge fibres intended for specific septumless injection system. The growth of SPME is also reflected in the expanding number of the accessories that make the technology even easier to use Also available is a portable field sampler which is a self-contained unit that stores the SPME fibre after sampling and during the shipment to the laboratory. Several scientific publications show the results obtained in inter-laboratory validation studies in which SPME was applied to determine the presence of different organic compounds at ppt levels, which demonstrates the reliability of this extraction technique for quantitative analysis.  相似文献   

19.
A solid-phase microextraction (SPME) procedure for the determination of four haloanisoles (2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole and 2,4,6-tribromoanisole), as well as their precursor halophenols (2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol), involved in the presence of cork taint in wine, was developed. Firstly, analytes were concentrated on a SPME fiber, and then halophenols were derivatised using N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA). The compounds were desorbed for 5 min in the gas chromatography injector port and then determined with an electron capture detector. The influence of different parameters on the efficiency of extraction (volume of sample, type of fibre coating and time) and derivatisation (time, temperature and volume of MSTFA) steps was evaluated. Polyacrylate (PA) was selected as the extraction fiber, optimised parameters for SPME were 10 ml of wine, temperature 70 degrees C and extraction time 60 min. The optimal conditions identified for the derivatisation step were temperature 25 degrees C, reagent volume 50 microl and extraction time 25 min. Under optimal conditions, the proposed method showed satisfactory linearity, precision and detection limits. The method was applied successfully to the analysis of red wine samples. To our knowledge, this is the first time that headspace (HS) SPME combined with on-fiber derivatisation has been applied to determine cork taint responsible compounds in wine.  相似文献   

20.
A headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC/MS) method was developed using experimental designs to quantify the flavor of commercial Cheddar cheese and enzyme-modified Cheddar cheese (EMCC). Seven target compounds (dimethyl disulfide, hexanal, hexanol, 2-heptanone, ethyl hexanoate, heptanoic acid, delta-decalactone) representative of different chemical families frequently present in Cheddar cheese were selected for this study. Three types of SPME fibres were tested: Carboxen/polydimethylsiloxane (CAR/PDMS), polyacrylate (PA) and Carbowax/divinylbenzene (CW/DVB). NaCl concentration and temperature, as well as extraction time were tested for their effect on the HS-SPME process. Two series of two-level full factorial designs were carried out for each fibre to determine the factors which best support the extraction of target flavors. Therefore, central composite designs (CCDs) were performed and response surface models were derived. Optimal extraction conditions for all selected compounds, including internal standards, were: 50 min at 55 degrees C in 3M NaCl for CAR/PDMS, 64 min at 62 degrees C in 6M NaCl for PA, and 37 min at 67 degrees C in 6M NaCl for CW/DVB. Given its superior sensitivity, CAR/PDMS fibre was selected to evaluate the target analytes in commercial Cheddar cheese and EMCC. With this fibre, calibration curves were linear for all targeted compounds (from 0.5 to 6 microg g(-1)), except for heptanoic acid which only showed a linear response with PA fibres. Detection limits ranged from 0.3 to 1.6 microg g(-1) and quantification limits from 0.8 to 3.6 microg g(-1). The mean repeatability value for all flavor compounds was 8.8%. The method accuracy is satisfactory with recoveries ranging from 97 to 109%. Six of the targeted flavors were detected in commercial Cheddar cheese and EMCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号