首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized a series of mesostructured aluminophosphate (AlPO)-based lamellar materials by several solid-state NMR techniques. In particular, we were able to estimate the average number of Al atoms and identify the nature of other ancillary groups in the second coordination sphere for each P site. Our work has shown that a combination of several dipolar coupling-based (31)P/(27)Al double-resonance techniques such as transfer of population in double-resonance (TRAPDOR), rotational echo double-resonance (REDOR), and heteronuclear correlation spectroscopy (HETCOR) as well as (1)H --> (31)P cross polarization (CP) can provide more detailed structural information regarding the local environments of P and Al atoms in AlPO-based mesostructured materials, which is not readily available from straightforward (31)P and (27)Al magic-angle spinning (MAS) experiments.  相似文献   

2.
Low-temperature 15N and 13C CP/MAS (cross-polarization/magic angle spinning) NMR has been used to analyze BChl-histidine interactions and the electronic structure of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila. The histidines were selectively labeled at both or one of the two nitrogen sites of the imidazole ring. The resonances of histidine nitrogens that are interacting with B850 BChl a have been assigned. Specific 15N labeling confirmed that it is the tau-nitrogen of histidines which is ligated to Mg2+ of B850 BChl molecules (beta-His30, alpha-His31). The pi-nitrogens of these Mg2+-bound histidines were found to be protonated and may be involved in hydrogen bond interactions. Comparison of the 2-D MAS NMR homonuclear (13C-13C) dipolar correlation spectrum of [13C6,15N3]-histidines in the LH2 complex with model systems in the solid state reveals two different classes of electronic structures from the histidines in the LH2. In terms of the 13C isotropic shifts, one corresponds to the neutral form of histidine and the other resembles a positively charged histidine species. 15N-13C double-CP/MAS NMR data provide evidence that the electronic structure of the histidines in the neutral BChl a/His complexes resembles the positive charge character form. While the Mg...15N isotropic shift confirms a partial positive charge transfer, its anisotropy is essentially of the lone pair type. This provides evidence that the hybridization structure corresponding to the neutral form of the imidazole is capable of "buffering" a significant amount of positive charge.  相似文献   

3.
Fast magic angle spinning (MAS) NMR spectroscopy is becoming increasingly important in structural and dynamics studies of biological systems and inorganic materials. Superior spectral resolution due to the efficient averaging of the dipolar couplings can be attained at MAS frequencies of 40 kHz and higher with appropriate decoupling techniques, while proton detection gives rise to significant sensitivity gains, therefore making fast MAS conditions advantageous across the board compared with the conventional slow- and moderate-MAS approaches. At the same time, many of the dipolar recoupling approaches that currently constitute the basis for structural and dynamics studies of solid materials and that are designed for MAS frequencies of 20 kHz and below, fail above 30 kHz. In this report, we present an approach for (1)H-(13)C/(1)H-(15)N heteronuclear dipolar recoupling under fast MAS conditions using R-type symmetry sequences, which is suitable even for fully protonated systems. A series of rotor-synchronized R-type symmetry pulse schemes are explored for the determination of structure and dynamics in biological and organic systems. The investigations of the performance of the various RN(n)(v)-symmetry sequences at the MAS frequency of 40 kHz experimentally and by numerical simulations on [U-(13)C,(15)N]-alanine and [U-(13)C,(15)N]-N-acetyl-valine, revealed excellent performance for sequences with high symmetry number ratio (N/2n > 2.5). Further applications of this approach are presented for two proteins, sparsely (13)C/uniformly (15)N-enriched CAP-Gly domain of dynactin and U-(13)C,(15)N-Tyr enriched C-terminal domain of HIV-1 CA protein. Two-dimensional (2D) and 3D R16(3)(2)-based DIPSHIFT experiments carried out at the MAS frequency of 40 kHz, yielded site-specific (1)H-(13)C/(1)H-(15)N heteronuclear dipolar coupling constants for CAP-Gly and CTD CA, reporting on the dynamic behavior of these proteins on time scales of nano- to microseconds. The R-symmetry-based dipolar recoupling under fast MAS is expected to find numerous applications in studies of protein assemblies and organic solids by MAS NMR spectroscopy.  相似文献   

4.
New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband pattern to nearby heteronuclei. As 3D NMR sequences, such 2D anisotropic correlation spectra become separated for inequivalent chemical sites along a third, isotropic dimension. Extending in such manner separate-local-field NMR approaches to quadrupoles facilitates the assignment of inequivalent resonances to specific structural environments, and provides new tools for the investigation of dynamics in solids. Details about these 2D and 3D NMR experiments are given, and their application is illustrated with 1H-23Na recoupling experiments on mononucleotides possessing multiple bound cations.  相似文献   

5.
Heteronuclear dipolar coupling is indispensable in revealing vital information related to the molecular structure and dynamics, as well as intermolecular interactions in various solid materials. Although numerous approaches have been developed to selectively reintroduce heteronuclear dipolar coupling under MAS, most of them lack universality and can only be applied to limited spin systems. Herein, we introduce a new and robust technique dubbed phase modulated rotary resonance (PMRR) for reintroducing heteronuclear dipolar couplings while suppressing all other interactions under a broad range of MAS conditions. The standard PMRR requires the radiofrequency (RF) field strength of only twice the MAS frequency, can efficiently recouple the dipolar couplings with a large scaling factor of 0.50, and is robust to experimental imperfections. Moreover, the adjustable window modification of PMRR, dubbed wPMRR, can improve its performance remarkably, making it well suited for the accurate determination of dipolar couplings in various spin systems. The robust performance of such pulse sequences has been verified theoretically and experimentally via model compounds, at different MAS frequencies. The application of the PMRR technique was demonstrated on the H-ZSM-5 zeolite, where the interaction between the Brønsted acidic hydroxyl groups of H-ZSM-5 and the absorbed trimethylphosphine oxide (TMPO) were probed, revealing the detailed configuration of super acid sites.

A new and robust technique dubbed phase modulated rotary resonance (PMRR) was proposed for the accurate determination of heteronuclear dipolar coupling under a broad range of MAS conditions in solid-state NMR spectroscopy.  相似文献   

6.
(15)N CP/MAS solid state NMR should be a method of choice to obtain essential structural information on organic materials containing nitrogen atoms. However, the technique is generally not selected for the characterization of non-labelled chemical compounds, which represents the most common situation encountered by chemists. Actually, due to the poor sensitivity of (15)N the method is time-consuming and a very fine calibration is often a prerequisite to reach a sufficient signal/noise. The main drawback comes from the weakness of (15)N-(1)H dipolar couplings which leads to a splitting of the static Hartman Hahn condition into very narrow sideband conditions under MAS. Practically, it is more difficult to obtain a high enough CP transfer level on (15)N for the entire spectrum than on other more conventional nuclei like (13)C. An experimental investigation of the CP efficiency using the ramp and adiabatic CP transfer experiments is here proposed. Preliminary adjustments of experimental settings were first made on an (15)N-labeled substituted heterocyclic model system, and then applied to several other organic compounds. Particular attention was paid to the detection of non-protonated nitrogen atoms with a significant chemical shift anisotropy, which represented the least favourable case. It was experimentally demonstrated that, for these atoms, the adiabatic passage provided a much higher transfer level than the more conventional ramp sequence leading to an enhancement factor of up to 3.5 at a MAS frequency of 30 kHz. The resulting sensitivity rendered possible the detection of non-protonated nitrogen atoms at natural abundance with 2.5-mm rotors at 9.4 T.  相似文献   

7.
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-(1)/(2) spectroscopy to the study of S >/= (3)/(2) nuclei. In our implementation, these techniques avoid homonuclear proton decoupling requirements by relying on moderately fast MAS rates (6-15 kHz) and use rotor-synchronized constant-time pulse sequences to achieve nearly arbitrary amplifications of the apparent dipolar coupling strengths. The result is a suite of simple 2D NMR experiments, whose line shapes carry valuable information about the structure and dynamics of solids containing quadrupolar and proton nuclei. The potential of these sequences was exploited to gather new insight into the structure and dynamics of a variety of boron-containing samples. These experimental SLF schemes were also extended to 3D NMR experiments that incorporate multiple-quantum MAS, thus enabling the resolution needed to study multiple chemical sites in a solid and providing a useful tool for the assignment of inequivalent sites.  相似文献   

8.
MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme allows the acquisition of proton carbon correlation spectra with a resolution comparable to that in solution-state NMR experiments. We observe an increase in resolution by a factor of 10-15 compared to standard heteronuclear correlation experiments using PMLG for 1H,1H dipolar decoupling in the indirect dimension. At the same time, the full sensitivity of the proton-based experiment is retained. In comparison to the heteronuclear detected version of the experiment, a gain in sensitivity of a factor of approximately 4.7 is achieved.  相似文献   

9.
A representative silicophosphate gel was synthesized, starting from orthophosphate groups and pyrophosphate species. At 136°C, a complex mixture of crystalline phases and amorphous components was obtained. A new panel of solid state NMR techniques was implemented, including dipolar based experiments (CP MAS), as well as J-derived techniques, in both homonuclear (31P INADEQUATE-MAS) and heteronuclear (31P/29Si HMQC-MAS) versions. These experiments are suitable for the fine characterization of P–O–P, P–O–Si, P–OH…linkages in silicophosphate gels and materials.  相似文献   

10.
The surface hydroxyl groups of γ‐alumina dehydroxylated at 500 °C were studied by a combination of one‐ and two‐dimensional homo‐ and heteronuclear 1H and 27Al NMR spectroscopy at high magnetic field. In particular, by harnessing 1H–27Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the 1H magic‐angle spinning (MAS) NMR spectrum was demonstrated thanks to 1H–27Al RESPDOR (resonance‐echo saturation‐pulse double‐resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {1H}‐27Al dipolar heteronuclear multiple quantum correlation (D‐HMQC), which was used to establish a first coordination map. Then, in combination with 1H–1H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.  相似文献   

11.
A general protocol for the structural characterization of paramagnetic molecular solids using solid-state NMR is provided and illustrated by the characterization of a high-spin Fe(II) catalyst precursor. We show how good NMR performance can be obtained on a molecular powder sample at natural abundance by using very fast (>30 kHz) magic angle spinning (MAS), even though the individual NMR resonances have highly anisotropic shifts and very short relaxation times. The results include the optimization of broadband heteronuclear (proton-carbon) recoupling sequences for polarization transfer; the observation of single or multiple quantum correlation spectra between coupled spins as a tool for removing the inhomogeneous bulk magnetic susceptibility (BMS) broadening; and the combination of NMR experiments and density functional theory calculations, to yield assignments.  相似文献   

12.
In the present work, multinuclear solid-state NMR techniques, combined with powder X-ray diffraction (PXRD) and infrared (IR) spectroscopy, are employed to monitor the crystallization of AlPO4-5 aluminophosphate prepared in the presence of HF under hydrothermal condition. The crystallization process is characterized by the evolution of intermediate gels, in which the long-rang ordering arrangement is probed by PXRD, revealing the threshold of the crystallization around 120 min. The appearance of 31P signals at ca. -22 and -29 ppm due to the structural P-O-Al unit and 19F signal at -120 ppm due to the structural F-Alpen-O-P unit in the NMR spectra of the series gels indicates that the crystalline framework is starting to form. The onset of the crystallization is also evidenced by the presence of the pentacoordinated Al in the structural F-Alpen-O-P unit which is considered to be associated with the ordered framework. More information about the local ordering of the gels is obtained from two-dimensional 27Al --> 31P heteronuclear correlation (HETCOR) and 31P/27Al double-resonance experiments. In combination with 1H --> 31P cross-polarization/magic-angle spinning (CP/MAS) experiments, two microdomains can be identified in the 120 min heated gel. A possible evolution mechanism of the gels consisting of three successive stages is proposed for the crystallization process.  相似文献   

13.
A general strategy of structural analysis of alumina silicate by combining various solid‐state NMR measurements such as single pulse, multi‐quantum magic angle spinning, double‐quantum homo‐nuclear correlation under magic angle spinning (DQ‐MAS), and cross‐polarization hetero‐nuclear correlation (CP‐HETCOR) was evaluated with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency) by using anorthite as a model material. The high magnetic field greatly enhanced resolution of 27Al in single pulse, DQ‐MAS, and even in triple‐quantum magic angle spinning NMR spectra. The spatial proximities through dipolar couplings were probed by the DQ‐MAS methods for homo‐nuclear correlations between both 27Al–27Al and 29Si–29Si and by CP‐HETCOR for hetero‐nuclear correlations between 27Al–29Si in the anorthite framework. By combining various NMR methodologies, we elucidated detailed spatial correlations among various aluminum and silicon species in anorthite that was hard to be determined using conventional analytical methods at low magnetic field. Moreover, the presented approach is applicable to analyze other alumina‐silicate minerals. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.  相似文献   

15.
Intermolecular multiple-quantum coherences (iMQCs) have some intrinsic properties different from conventional single-quantum coherences in solution NMR. In this paper, we extended our study to heteronuclear iMQCs in IS (I=1/2, S=3/2) spin systems. A sample of sodium chloride (NaCl) water solution was taken as an example. Heteronuclear COSY revamped by asymmetric Z-gradient echo detection (CRAZED) experiments were performed. One- and two-dimensional heteronuclear iMQC spectra were obtained. The quantum-mechanical treatment was used to deduce the signal expressions. Magic angle experiments validate that the signals are indeed from intermolecular dipolar interaction and insensitive to the imperfection of radio-frequency (RF) flip angles. Both experimental results and theoretical analysis indicate that heteronuclear CRAZED experiment allows coherence transfer from spin-3/2 nuclei to spin-1/2, and vice verse. Furthermore, the dependences of iMQC signal intensities on RF pulse flip angles follow the same rules as those for heteronuclear IS (I=1/2, S=1/2 or 1) spin systems.  相似文献   

16.
This paper highlights the use of two-dimensional (2D) solid-state NMR correlation techniques to probe the chemical homogeneity of organically modified silicate networks. Specifically, 29Si{1H} heteronuclear correlation (HETCOR) NMR experiments have revealed the spatial proximity of the two types of Si units present in a gel obtained from co-hydrolysis of methyldiethoxysilane and triethoxysilane. Similar information has also been obtained by using 2D 1H homonuclear correlation NMR spectroscopy. Such experiments were only possible by combining the use of high magnetic field (14.10 T) with fast MAS spinning rate (30 kHz).  相似文献   

17.
The structure and dynamic behavior of mobile components play a significant role in determining properties of solid materials. Herein, we propose a novel real-time spectrum-editing method to extract signals of mobile components in organic solids on the basis of the polarization inversion spin exchange at magic angle (PISEMA) pulse sequence and the difference in (13)C T(1) values of rigid and mobile components. From the dipolar splitting spectrum sliced along the heteronuclear dipolar coupling dimension of the 2D spectrum, the structural and dynamic information can be obtained, such as the distances between atoms, the dipolar coupling strength, the order parameter of the polymer backbone chain, and so on. Furthermore, our proposed method can be used to achieve the separation of overlapped NMR signals of mobile and rigid phases in the PISEMA experiment. The high efficacy of this 2D NMR method is demonstrated on organic solids, including crystalline L-alanine, semicrystalline polyamide-6, and the natural abundant silk fibroin.  相似文献   

18.
用吡啶代替四乙二醇作为溶剂, 在Al2O3-H3PO4-C6H11NH2-Py体系下合成出层状阴离子骨架磷酸铝[Al2P3O12H]2-·2[C6H11NH+3](UT-4)的纯晶相, 采用一维27Al, 31P MAS NMR , 1H→31P CP(Cross Polarization)以及二维27Al- 31P HETCOR(Heteronuclear Correlation)高分辨固体核磁共振技术对其骨架结构进行了表征. 采用两种方法对 27Al信号进行了归属, 并通过分析27Al-31P HETCOR谱对31P 信号进行了归属.  相似文献   

19.
A study of the retention behaviour of the enantiomers (R)- and (S)-1,1'-binaphthyl-2,2'-diol as well as (+) and t-)-O,O'-dibenzoyl-tartaric acid was performed using the two chiral stationary phases (CSPs) Kromasil-DMB and Kromasil-TBB. Detailed information about the interactions between the analytes and the two CSPs was obtained from suspended-state HR/MAS transferred NOESY NMR experiments as well as suspended-state HR/MAS 1H NMR titration experiments. Good correlation between the suspended-state HR/MAS NMR experiments and the corresponding HPLC experiments was obtained. This shows that suspended-state HR/MAS NMR as well as solid-state CP/MAS NMR spectroscopy can be used to investigate interactions between stationary phases and analytes under conditions that are similar to those used in HPLC.  相似文献   

20.
The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号