首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
The density and the surface tension of molten calcium fluoride have been measured in the temperature range from 1690 to 1790 K by an improved Archimedian method and a ring depressing technique (J. Crystal Growth 187 (1998) 391), respectively. The ring depressing technique was demonstrated as an effective technique to measure the surface tension in comparison with the conventional ring pulling technique. The density varied with the temperature change corresponding to a linear relationship: ρ=3.767−6.94×10−4T (K). The density of the CaF2 melt at the melting point is 2.594 g/cm3, which is equal to the result obtained by Shiraishi and Watanabe (Bull. Res. Inst. Miner. Dressing Metal, Tohoku Univ. 34 (1978) 1), but the temperature coefficient of the density is different from the results obtained by other investigators. The thermal expansion coefficient of calcium fluoride melt linearly increases with temperature heating. The surface tension of molten calcium fluoride indicates a negative linear relationship as a function of the melt temperature: γ(T)=442.4−0.0816×T(K) (mN/m). The surface tension measured using the ring depressing technique is larger than those results obtained by other techniques.  相似文献   

2.
Surface crystallization in a rare-earth aluminosilicate glass (Nd2O3–Al2O3–SiO2–TiO2) was studied using an isothermal method and the crystal growth rate of the glasses was evaluated as a function of the composition. For measuring the surface crystal growth rate, two different methods: measurement of the crystal layer in the longitudinal and lateral growth direction. It was found that crystallization proceeded by surface crystallization only and TiO2 did not act as a nucleating agent. The growth rate was strongly dependent on the viscosity of glass and agreed with prediction from the Preston model using the known viscosity and melting temperature. As the Si/Nd and Si/Al ratios decreased, the crystal growth rate increased. TiO2 and Nd2O3 played the role of network modifier, which decreased the viscosity of the glass, facilitating crystallization of the rare-earth aluminosilicate glass.  相似文献   

3.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

4.
《Journal of Non》2007,353(32-40):3274-3278
The temperature dependence of the density, the viscosity, the ultrasound velocity and attenuation and the magnetic susceptibility of the Pd–18 at.% Si alloy in liquid state have been measured. A difference during heating and subsequent cooling with a branching temperature at 1380–1430 K was observed for all measured quantities. An abnormally high attenuation of ultrasound was furthermore observed during several hours after that the sample was melted. The results are interpreted in terms of metastable inhomogeneities existing in the melt.  相似文献   

5.
An attempt was made to measure the temperature dependence of viscosity of Metglas 2826 near the glass temperature using rapid heating. This temperature region is normally inaccessible to viscous flow measurements due to crystallization. The melt viscosity, heat of fusion at the melting temperature, and the melting temperature itself were also measured. These parameters are used to calculate the critical cooling rate needed to avoid crystallization via standard nucleation/crystal growth/transformation theory.  相似文献   

6.
CdTe(2 1 1)B epilayers were grown on 3 in Si(2 1 1) substrates which misoriented 0–10° toward [1 1 1] by molecular beam epitaxy (MBE). The relationship of X-ray double-crystal rocking curve (XRDCRC) FWHM and deflection angle from CdTe(2 1 1) to Si(2 1 1) was studied. For 4.2–4.5 μm CdTe, the best value of FWHM 83 arcsec was achieved while deflection angle is 2.76°. A FWHM wafer mapping indicated a good crystalline uniformity of 7.4 μm CdTe on tilting Si(2 1 1), with FWHM range of 60–72 arcsec. The shear strains of these epilayers were analyzed, using reciprocal lattice points of symmetric and asymmetric reflections measured by high-resolution multi-crystal multi-reflection X-ray diffractometer (HRMCMRXD). It was found that the shear strain angle of epilayer is effectively reduced by using proper tilting Si(2 1 1) substrate. It was also proved that the lattice parameter of CdTe(2 1 1)B is affected by the shear strain and thermal strain.  相似文献   

7.
An EMF cell using a Na-β″-alumina electrolyte has been designed for the quantification of the thermodynamic activity of Na2O (aNa2O) in a series of sodium-bearing silicate liquids at high temperature. Initial experiments have been performed using Na2O–0.663WO3 and Na2O–0.555MoO3 as reference liquids. Values of aNa2O derived for Na2O–2SiO2 binary melt are found to be in excellent agreement with data from the literature, confirming the validity of the method. To extend use of this experimental set-up to higher temperature, the aNa2O of industrial C-glass has been calibrated as a reference liquid at temperatures up to 1263 °C. The influence of additions of CaO, Al2O3 and B2O3 on the Na2O activity of binary sodium-silicates has been quantified. For each glass composition, measured values of aNa2O are a function of temperature, log(aNa2O) varying as a function of inverse absolute temperature. Activation energies derived from these data are all generally similar with the exception of industrial E-glass, which is rich in Al and poor in Na. At constant temperature, additions of network forming Al2O3 and B2O3 to a Na2O–SiO2 binary melt yield a decrease of the activity of Na2O, while addition of network modifying CaO results in an increase in (aNa2O). These changes are qualitatively consistent with predictions based upon expected modifications of melt structure. However, measured values of log(aNa2O) do not correlate perfectly with theoretical models of glass basicity, suggesting that either sodium activity is decoupled from melt basicity, or that current models are insufficient to calculate that parameter, in particular for the case of liquids poor in Na and rich in Al.  相似文献   

8.
The density, surface tension and viscosity of the 50RO-50P2O5 (R: Mg, Ca, Sr, Ba and Zn) glass melts have been measured over the range, 1073-1623 K. The effects of R cations on these properties have been investigated. The density of the melt was found to increase in the order, R: Mg<Ca<Zn<Sr<Ba, with increasing molar weight of cation. The surface tension in the temperature range of 1373-1473 K increased approximately with cation in the order, R: Zn<Ba<Mg<Ca<Sr. The viscosity and the negative, temperature coefficient of surface tension increased in the order, R: Ba<Sr<Ca<Zn<Mg. All melts exhibited negative temperature coefficients of surface tension. The effect of Mg and Zn cations on the properties were different to that for Ba, Sr, and Ca cations and this is discussed using bulk glass data published in a previous report. The features of Mg and Zn metaphosphate glass melts, that is high values of viscosity, and temperature coefficient of surface tension, are related to the small Oxygen Coordination Number of the cations (=4) when compared with those of Ca, Sr, Ba metaphosphate glass melts.  相似文献   

9.
Surface tension gradients in free crystal growth melts give rise to convective flow. If these gradients are due to thermal gradients, the well known thermocapillary (Marangoni) convection ensues. Concentration gradients due to segregation at the interface during growth can lead to additional solutocapillary convection. A system with large solutocapillary convection is Ge‐Si due to the pronounced segregation and the strong difference in surface tension; solutal buoyancy convection is also present due to the large density difference between Ge and Si. Solutocapillary convection will oppose thermocapillary convection in the Ge‐Si system since Si, having the higher surface tension, is preferentially incorporated into the crystal. A set of experiments directly proving and partially quantifying the effect has been conducted under microgravity during a parabolic flight campaign by recrystallizing Ge‐Si mixtures of different compositions, between 3% and 9% Si, in a crucible with tracers to visualize the movement. Solutocapillary flow with initial flow rates in excess of 5.5 cm/s at the onset of crystallization was measured. A slight dependence of the flow velocity on the initial Si content has been found. Experiments on the ground showed the same effect but with overall smaller speeds; this difference can be explained by the additional action of solutal buoyancy convection. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The crystallization behavior of lithium disilicate glass powder heated in molten LiNO3 salt was investigated using X-ray diffraction techniques. Heat treatment at 500°C with LiNO3 molten salt caused a lithium metasilicate, Li2SiO3, crystal phase to appear after 5–96 h. By contrast, glass powder heat-treated in air at 500°C remained amorphous after 5 h and turned into lithium disilicate, Li2Si2O5, crystal after 40 h. Qualitatively similar results were obtained at 400°C. Glass powder heat-treated at 575°C in both molten salt and in air turned into lithium disilicate crystal. Metasilicate crystallization occurs with LiNO3 molten salt at 500 and 400°C due to the incorporation of lithium into the sample glass powder from the melt during crystallization. An increase in lithium content in the sample after molten salt heat treatment was confirmed by chemical analysis using dc plasma emission spectroscopy.  相似文献   

11.
Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria elimination during stirring, and to optimise the homogenisation process, both simulations of striation and homogenisation experiments are performed. The results show that stirring broadens the stria size distribution in the melt through conversion of larger striae into smaller ones. Only the striae with a size below half the diffusion length in the melt can be eliminated during the melting process. Stirring itself does not homogenise the melt, but enhances the stria elimination rate by generating small striae.  相似文献   

12.
Phase diagrams of 1,2,4,5-tetrachlorobenzene–β-naphthol and 1,2,4,5-tetramethylbenzene–succinonitrile systems which are organic analogues of a nonmetal–nonmetal and a nonmetal–metal system, respectively, show the formation of a simple eutectic (melting point 103.7°C) with 0.71 mole fraction of β-naphthol in the former case and a monotectic (melting point 76.0°C) with 0.07 mole fraction of succinonitrile and a eutectic (melting point 52.5°C) with 0.97 mole fraction of succinonitrile in the latter case. The growth behaviour of the pure components, the eutectics and the monotectic studied by measuring the rate of movement of the solid–liquid interface in a capillary, suggests that the data obey the Hillig–Turnbull equation, v=uT)n, where v is the growth velocity, ΔT is the undercooling and u and n are constants depending on the nature of the materials involved. From the values of enthalpy of fusion determined by the DSC method using Mettler DSC-4000 system, entropy of fusion, interfacial energy, enthalpy of mixing and excess thermodynamic functions were calculated. The optical microphotographs of pure components and polyphase materials show their characteristic features.  相似文献   

13.
Possible relationships between measures of glass stability (GS) against devitrification on heating (evaluated by the Hrubÿ parameter KH=(TchTg)/(TmTch), and the parameter Kw=(TchTg)/Tm) and a criterion of glass-forming ability (GFA) – the critical cooling rate – were investigated by computing non-isothermal crystallization for typical values of the main quantities that control crystal nucleation and growth in silicate glasses. We limit these quantities to one thermodynamic parameter – the melting entropy (ΔSm) and two kinetic parameters that control the viscosity (B and T0 in the Vogel–Fulcher–Tamman equation or Tg and in Avramov’s equation). The effect of heterogeneous nucleation and, in particular, the possible role of the surface as active substrate is tested. The results presented herein demonstrate that GS and GFA are indeed related concepts.  相似文献   

14.
GHz microwave properties of melt spun Fe-Si alloys   总被引:1,自引:0,他引:1  
The structural and microwave properties of melt spun Fe100−xSix (x = 10, 20, 30) nanocomposites were investigated. The phases varied with Si content in FeSi alloys. It is found that the Fe3Si and FeSi phases could be obtained with Si content up to 20 at.%. The X-ray absorption fine structure (XAFS) spectra of Fe K-edges show that the local structures around Fe atoms in melt spun Fe-Si alloys become more disordered with increasing Si content when compared with that of α-Fe. The complex permittivity-frequency and permeability-frequency properties were determined in the microwave frequency regime of 2-18 GHz by vector network analysis. It is found that flake-like FeSi powder composite has the largest values of μ′ and μ″ at 2 GHz. The reflection loss shifts to the higher frequency with the Si content increasing for melt spun FeSi alloys. A minimum reflection loss of −16.5 dB is obtained at 13.9 GHz for composition Fe70Si30 with the thickness of 1.5 mm. However, for composition Fe70Si30, the minimum reflection loss shifts to lower frequency and larger value with the thickness increasing. The results suggest a new design for microwave absorbers based on electromagnetic wave-absorbing materials.  相似文献   

15.
Fluorine doped silica gels were synthesized by using the sol-gel processes of (A) SiF4(g) and H2O(1) and (B) the mixed solution of Si(OC2H5)4, C2H5OH, H2O and H2SiF6. By the former process we obtained a gel of relatively high fluorine content (8–12 at.%F), while we could synthesize the gel of 0–12 at.% F by adjusting the F/Si ratio of the starting solution mixtures by the latter process.

The defluorination behavior and the structural change of these gels at high temperature were studied by heating-mass spectrometry, IR and ESR measurements. The results revealed the following: (1) defluorination by liberation of SiF4(g) was admitted from temperatures at about 400°C and was controlled by the diffusion of fluorine in the gel bulk. (2) The peak separation analysis for the IR band of 1300-900 cm−1, where the stretching vibrations of Si---O and Si---F appear, showed that the change of the band shape resulted from the increase or the decrease of the Si---F bonds and the change of the bond angle of Si---O---Si as well as the change of the force constant accompanied by fluorination or defluorination. (3) The defects of the Si E′ center were induced by X-ray irradiation depending on the degree of the defluorination, and were reduced by the heat treatment. However, with the heat treatment at temperatures higher than 1000°C, the E′ center increased again. The IR spectra suggest that this behavior might correspond to the gel-glass trasition.  相似文献   


16.
Segregation phenomenon of Ga in Czochralski (CZ)–Si crystal growth has been investigated. The effective segregation coefficient, keff, of Ga was obtained for different growth rates by assuming the simple relationship between the concentration of Ga in Si crystal and the bulk Ga concentration in melt. Applying BPS theory to effective segregation coefficients which is valid for the melt-solidified fraction up to 0.38, an equilibrium segregation coefficient of Ga was obtained, k0=0.0079.  相似文献   

17.
Housei Akazawa   《Journal of Non》2003,320(1-3):113-124
The network of hydrogenated silicon nitride (a-SiNx:H) films deposited by plasma-enhanced chemical vapor deposition is compacted when the film is irradiated by high-energy photons in the range from vacuum-ultraviolet to soft X-rays (hν>100 eV). In situ monitoring by spectroscopic ellipsometry of the change in the film’s optical response discriminated between the photon-stimulated structural change and the solely temperature-dependent change of the dielectric constant. To elucidate the compositional difference before and after irradiation, the dielectric function of a-SiNx:H was modelled by a mixture of its component dielectric functions, i.e., of Si3N4, crystalline Si, and voids, under the Bruggeman effective medium approximation. Irradiation decreased the nominal volumes of void and c-Si components from their initial values by 44% and 49%, respectively. The resulting total 9.8% reduction in thickness can be explained by the compaction model. The photolytic origin of the reaction was demonstrated by the quick commencement and termination of the changes in optical evolution in response to the supply and cessation of irradiation, as well as by the insensitivity of the change in the refractive index to the temperature of irradiation. The microscopic process which is primarily responsible for the rearrangement of the network is cross-linking between the H-terminated –SiHx and –NHy species followed by the release of H2. In contrast to this, the creation of dangling bonds is a minor process.  相似文献   

18.
The relationships between the chemical composition and the derivative rheological and thermodynamic values have been determined for two melt series in the anorthite-wollastonite-gehlenite (An-Wo-Geh) compatibility triangle. The melt series have 0.5 and 1 non-bridging oxygens per tetrahedrally coordinated cation (NBO/T), respectively. The influences of the ratio Si/(Si + AlCa1/2) and NBO/T on the fragility and the configurational entropy at Tg are evaluated. Linear dependencies of the viscosity, the glass transition temperature and the fragility on the ratio Si/(Si + AlCa1/2) are found for the two melt series. A crossover in the viscosity-temperature relationship is observed for both series, i.e. an inverse compositional dependence of viscosity in the high and low viscous range. The crossover presumably reflects different responses of the adjustment of melt structure to the substitution of Al3+ + 1/2Ca2+ for Si4+ in the low versus the high viscous ranges. The crossover shifts to higher temperature with increasing NBO/T.  相似文献   

19.
Melting and solidification of pure gallium is studied using real-time radioscopy methods. Sharp contrast between melt and solid phases with a 3% density difference is illustrated. The interfacial shape reflects convective flow in the liquid phase. Comparisons are made between real-time non-intrusive X-ray observations and results gained from probing techniques and numerical simulations reported in the literature. Similar qualitative trends in temperature distribution, yet discrepancies in interfacial location and shape, are exhibited.  相似文献   

20.
We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional solidification process for multi-crystalline silicon ingots. The argon flow rate was varied to provide different solidification conditions and to change the relative values between the argon shear stress and the marangoni tension at the melt free surface. We found that the marangoni tension together with the shear stress mainly influences the upper layer melt convection while the thermal buoyancy force dominates the bulk flow of the melt. At low argon flow rates, the argon shear stress can be neglected and the marangoni tension alone enhances the melt convection intensity near the gas–melt–crucible triple junction point. The marangoni tension is so weak that it cannot modify the melt flow pattern in this case. For medium flow rate, the marangoni tension can significantly weaken the shear stress effect at the outer part of the melt free surface, leading to a distinctive flow pattern in the silicon melt. With further increase in argon flow rate, the shear stress sharply increases and dominates the upper layer melt flow, limiting the marangoni tension effect to the triple point. The numerical results are helpful for better understanding and controlling of the directional solidification process for high quality multi-crystalline silicon ingots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号