首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presented an approach to prepare monodisperse immobilized Ti4+ affinity chromatography (Ti4+-IMAC) microspheres for specific enrichment of phosphopeptides in phosphoproteome analysis. Monodisperse polystyrene seed microspheres with a diameter of ca. 4.8 μm were first prepared by a dispersion polymerization method. Monodisperse microspheres with a diameter of ca. 13 μm were prepared using the seed microspheres by a single-step swelling and polymerization method. Ti4+ ion was immobilized after chemical modification of the microspheres with phosphonate groups. The specificity of the Ti4+-IMAC microspheres to phosphopeptides was demonstrated by selective enrichment of phosphopeptides from mixture of tryptic digests of α-casein and bovine serum albumin (BSA) at molar ratio of 1 to 500 by MALDI-TOF MS analysis. The sensitivity of detection for phosphopeptides determined by MALDI-TOF MS was as low as 5 fmol for standard tryptic digest of β-casein. The Ti4+-IMAC microspheres were compared with commercial Fe3+-IMAC adsorbent and homemade Zr4+-IMAC microspheres for enrichment of phosphopeptides. The phosphopeptides and non-phosphopeptides identified by Fe3+-IMAC, Zr4+-IMAC and Ti4+-IMAC methods were 26, 114, 127 and 181, 11, 11 respectively for the same tryptic digest samples. The results indicated that the Ti4+-IMAC had the best performance for enrichment of phosphopeptides.  相似文献   

2.
In this work, we developed phosphate functionalized magnetic Fe3O4@C microspheres to immobilize Zr4+ ions for selective extraction and concentration of phosphopeptides for mass spectrometry analysis. Firstly, we synthesized Fe3O4@C magnetic microspheres as our previous work reported. Then, the microspheres were functionalized with phosphate groups through a simple hydrolysis reaction using 3-(trihydroxysilyl)propyl methylphosphate. And the Zr4+ ions were immobilized on phosphate-functionalized magnetic microspheres by using phosphate chelator. Finally, we successfully employed Zr4+-phosphate functionalized magnetic microspheres to selectively isolate the phosphopeptides from tryptic digests of standard protein and real samples including rat brain. All the experimental results demonstrate the enrichment efficiency and selectivity of the method we reported here.  相似文献   

3.
The highly selective capture of phosphopeptides from proteolytic digests is a great challenge for the identification of phosphoproteins by mass spectrometry. In this work, the zirconium phosphonate-modified magnetic Fe3O4/SiO2 core/shell nanoparticles have been synthesized and successfully applied for the selective capture of phosphopeptides from complex tryptic digests of proteins before the analysis of MALDI-TOF mass spectrometry with the desired convenience of sample handling. The ratio of magnetic nanoparticle to protein and the incubation time for capturing phosphopeptides from complex proteolytic digests were investigated, and the optimized nanoparticle-to-protein ratio and incubation time were between 15:1 to 30:1 and 30 min, respectively. The excellent detection limit of 0.5 fmol β-casein has been achieved by MALDI-TOF mass spectrometry with the specific capture of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles. The great specificity of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles to phosphopeptides was demonstrated by the selective capture of phosphopeptides from a complex tryptic digest of the mixture of α-casein and bovine serum albumin at molar ratio of 1 to 100 in MALDI-TOF-MS analysis. An application of the magnetic nanoparticles to selective capture phosphopeptides from a tryptic digest of mouse liver lysate was further carried out by combining with nano-LC-MS/MS and MS/MS/MS analyses, and a total of 194 unique phosphopeptides were successfully identified.  相似文献   

4.
Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. In this work, for the first time, niobium ions were directly immobilized on the surface of polydopamine-coated magnetic microspheres through a facile and effective synthetic route. The Fe3O4@polydopamine-Nb5+ (denoted as Fe3O4@PD-Nb5+) microspheres possess merits of high hydrophilicity and good biological compatibility, and demonstrated low limit of detection (2 fmol). The selectivity was also basically satisfactory (β-casein:BSA = 1:500) to capture phosphopeptides. They were also successfully applied for enrichment of phosphopeptides from real biological samples such as human serum and nonfat milk. Compared with Fe3O4@PD-Ti4+ microspheres, the Fe3O4@PD-Nb5+ microspheres exhibit superior selectivity to multi-phosphorylated peptides, and thus may be complementary to the conventional IMAC materials.  相似文献   

5.
Protein phosphorylation is one of the most important post-translational modifications. Due to the dynamic nature and low stoichiometry of the protein phosphorylation, enrichment of phosphopeptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Many metal oxides such as titanium dioxide and zirconium dioxide have been successfully applied to isolation and enrichment of phosphopeptides. Recently, niobium pentoxide was proved to have the ability for selective enrichment of phosphopeptides. Considering the proximity of tantalum to niobium, we supposed that Ta2O5 can be used as affinity probes for phosphopeptide enrichment. In the work, we synthesized Fe3O4@Ta2O5 magnetic microspheres with core–shell structure for selective enrichment of phosphopeptides. To demonstrate its ability for selective enrichment of phosphopeptides, we applied Fe3O4@Ta2O5 magnetic microspheres to isolation and enrichment of the phosphopeptides from tryptic digestion of standard proteins and real samples, and then the enriched peptides were analyzed by matrix-assisted laser desorption mass spectrometry analysis (MALDI-MS) or liquid chromatography coupled to electrospray ionization mass spectrometry (LC–ESI-MS). Experiment results demonstrate that Ta2O5 coated-magnetic microspheres show the excellent potential for selective enrichment of phosphopeptides.  相似文献   

6.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

7.
Narrow-disperse magnetic microspheres were prepared by alkaline coprecipitation of Fe2+ and Fe3+ ions within poly(acrylic acid–divinylbenzene) microspheres that were prepared by distillation–precipitation copolymerization. Magnetic microspheres with polymer brushes that contain epoxy groups were prepared by graft copolymerization of glycidyl methacrylate and glycerol monomethacrylate via atom transfer radical polymerization (ATRP) from the magnetic microsphere surfaces. Subsequently, magnetic microspheres with thiol-containing polymer brushes were prepared by treating the epoxy group-containing magnetic microspheres with sodium hydrosulfide. Gold nanoparticles were immobilized in the brush layer of the thiol-containing magnetic microspheres through Au–S coordination. The catalytic activity of the gold nanoparticle-immobilized magnetic microspheres was investigated using the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride as a model reaction. The catalyst could be reused for over 10 cycles without noticeable loss of catalytic activity.  相似文献   

8.
Octyl‐functionalized hybrid magnetic mesoporous (Fe3O4·nSiO2·meso‐hybrid‐C8) microspheres were synthesized and applied in the isolation and pre‐concentration of low‐concentration peptides prior to direct analysis by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Such microspheres possess high surface area (324 m2/g), hydrophobic group (C8), relatively large pore volume (0.304 cm3/g), uniform pore diameter (~3.7 nm), and magnetic responsivity, which make them a simple and efficient kind of adsorbent for the enrichment of low‐concentration peptides. For bovine serum albumin (BSA, 15 fmol μL–1) digest, after concentration by Fe3O4·nSiO2·meso‐hybrid‐C8 microspheres, the enrichment performance was evidently better than those obtained by solvent evaporation and C8‐functionalized magnetic particles, and comparable to those obtained by commercial Anchor chip target and ZipTipC18 pipette tip. Such microspheres were further applied in the enrichment of the tryptic digests of rat cerebellum proteins and endogenous peptides of crude human serum, and more peaks with higher signal‐to‐noise (S/N) ratio were obtained than before pre‐concentration. Furthermore, the pre‐concentration reproducibility of magnetic microspheres for biological samples was good, and the limit of detection (LOD) for BSA digests by MALDI‐TOF MS was decreased by at least one order of magnitude compared with that obtained without pre‐concentration. All the above‐mentioned results indicate that the synthesized Fe3O4·nSiO2·meso‐hybrid‐C8 microspheres are promising for the enrichment of low‐concentration peptides from complex biosamples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Despite recent advances in phosphoproteome research, detection and characterization of multi-phosphopeptides have remained a challenge. Here we present a novel IMAC strategy for effective extracting multi-phosphopeptides from complex samples, through Ga3+ chelation to the adenosine tri-phosphate (ATP)-functionalized magnetic nanoparticles (Ga3+-ATP-MNPs). The high specificity of Ga3+-ATP-MNPs was demonstrated by efficient enriching multi-phosphopeptides from the digest mixture of β-casein and BSA with molar ratio as low as 1:5000. Ga3+-ATP-MNPs were also successfully applied for the phosphoproteome analysis of rat liver mitochondria, resulting in the identification of 193 phosphopeptides with 331 phosphorylation sites from 158 phosphoproteins. In other words, 54.4% of the phosphopeptides trapped by Ga3+-ATP-MNPs were observed with more than one phosphorylated sites, resulting in significant improvement on the identification of peptides with multi-phosphorylated sites. The high specificity of Ga3+-ATP-MNPs towards multi-phosphopeptides may be due to the synergistic effect of the strong hydrophilic surface functionalized by ATP and the proper chelating strength provided by Ga3+. Moreover, the unique magnetic core of Ga3+-ATP-MNPs also facilitates the isolation process and on-plate enrichment for direct MALDI MS analysis with limit of detection as low as 30 amol. This new affinity-based protocol is expected to provide a powerful approach for characterizing multiple phosphorylation sites on proteins in complex and dilute analytes, which may be explored as complementary technique for improving the coverage of phosphoproteome.  相似文献   

10.
Wang S  Bao H  Yang P  Chen G 《Analytica chimica acta》2008,612(2):182-189
In this report, a four-component nanocomposite, trypsin-immobilized polyaniline-coated Fe3O4/carbon nanotube composite, was synthesized for highly efficient protein digestion. Fe3O4 was deposited by the chemical coprecipitation of Fe2+ and Fe3+ in an alkaline solution containing carbon nanotubes (CNTs) to prepare nano-Fe3O4/CNT composite. Subsequently, polyaniline (PA) was assembled on the Fe3O4/CNT composite by the in situ polymerization of aniline in the presence of trypsin to obtain trypsin-immobilized PA/Fe3O4/CNT nanocomposite. The novel 1D superparamagnetic biomaterial has been characterized by TEM, SEM, XRD, and magnetometric analysis. The feasibility and performance of the unique magnetic biomaterial have been demonstrated by the tryptic digestion of bovine serum albumin, myoglobin, and lysozyme within 5 min. The digests were identified by MALDI-TOF MS with sequence coverages that were comparable to those obtained from the conventional in-solution tryptic digestion. The present biocomposite offers considerable promise for protein analysis due to its high magnetic responsivity and excellent dispersibility. It can be easily isolated from the digests with the aid of an external magnetic field. Because the enzyme-immobilized nanocomposite can be prepared by a simple two-step deposition approach at low cost, it may find a wide range of biological applications including proteome research.  相似文献   

11.
The core–shell structure Fe3O4/SiO2 magnetic microspheres were prepared by a sol–gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu2+, Ni2+ and Zn2+, were chelated on the Fe3O4@SiO2–IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni2+‐chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3O4@SiO2–IDA–Ni2+ magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His‐tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Capillary-channeled polymer (C-CP) fibers are demonstrated as a selective stationary phase for phosphopeptide analysis via LC–MS. Taking advantage of the oxidative self-polymerization of dopamine under alkaline conditions, a simple system involving a dilute aqueous solution of 0.2% w/v dopamine hydrochloride in 0.15% w/v TRIS buffer, pH 8.5 was utilized to coat polydopamine onto nylon 6 C-CP fibers. Confirmation of the polydopamine coating on the fibers (nylon-PDA) was made through attenuated total reflection-FTIR (ATR-FTIR) analysis. Imaging using SEM was also performed to examine the morphology and topography of the nylon-PDA. Subsequent loading of Fe3+ to the nylon-PDA matrix was confirmed by SEM/energy dispersive X-ray spectroscopy (SEM/EDX). The Fe3+-bound nylon-PDA fibers packed in a microbore column format were tested in the off-line preconcentration of phosphopeptides from a 1:100 mixture of β-casein/BSA digests for MALDI-TOF analysis. The packed column was also installed onto an HPLC system as a platform for the online sample clean-up and enrichment of phosphopeptides from a 1:1000 mixture of β-casein/BSA protein digests that were determined by subsequent ESI–MS analysis.  相似文献   

13.
采用点击化学的方法将自然界中的天冬氨酸(aspartic acid)键合到硅球上(命名为Click Asp),并将Fe3+配位到Click Asp上,合成固定金属离子亲和色谱(IMAC)材料(Fe3+-Click Asp);采用红外光谱、X射线电子能谱和扫描电镜等表征证明Fe3+-Click Asp成功合成。将此IMAC材料用于蛋白质酶解液和牛奶中的磷酸化肽的富集,实现了磷酸化肽的高选择性富集。本研究为磷酸化蛋白质组学提供了新材料和新方法。  相似文献   

14.
Selective detection of phosphopeptides from complex biological samples is a challenging and highly relevant task in many proteomics applications. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres with phosphopeptides has been developed. With a well-defined core-shell structure, the Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres not only have a shell of aluminum oxide, giving them a high-trapping capacity for the phosphopeptides, but also have magnetic property that enables easy isolation by positioning an external magnetic field. The prepared Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres have been successfully applied to the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and ovalbumin. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:50 as well as tryptic digest product of casein and five protein mixtures. The results also proved a stronger selective ability of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres over Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC (immobilized metal affinity chromatography) resin, and TiO(2) beads. Finally, the Al(2)O(3) coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. These results show that Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres are very good materials for rapid and selective separation and enrichment of phosphopeptides.  相似文献   

15.
The magnetic poly(ethylene glycol dimethacrylate-n-vinylimidazole) (Fe3O4@poly (EGDMA@VIM)) microspheres were prepared by suspension polymerization method using magnetite Fe3O4 nano-powder and the porosity, morphology, chemical composition and structure of the magnetic polymer microspheres were characterized. The specific surface area and swelling ratio of the Fe3O4@poly(EGDMA@VIM) microspheres were found to be 278.6?m2·g1 and 48%, respectively. The Fe3O4@poly(EGDMA@VIM) microspheres were used as an adsorbent for phenol removal. The effects of the parameters such as adsorbent dosage, temperature, pH and initial concentration of phenol solutions on the adsorption were investigated. The experimental adsorption equilibrium data obtained were fitted with Langmuir, Freundlich and Dubinin-Radushkevich isotherms and the pseudo-first-order, pseudo-second-order and intra–particle diffusion kinetic models. The adsorption equilibrium data agreed well with the Freundlich isotherm and the pseudo-second-order kinetic model. The maximum capacity of the Fe3O4@poly(EGDMA@VIM) microspheres was calculated to be 33.83?mg·g1 at 298?K and natural pH from Langmuir isotherm. The Fe3O4@poly(EGDMA@VIM) microspheres were found to be reusable for removal of phenol after desorption for several times. The result indicated that the Fe3O4@poly(EGDMA@VIM) microspheres are potential candidate for removal of phenol in wastewaters.  相似文献   

16.
Magnetic iron(II, III) oxide (magnetite, Fe(3)O(4)) nanoparticles were used to selectively enrich phosphopeptides from tryptic digests of bovine beta-casein and from tryptic digest mixtures containing bovine beta-casein, cytochrome c, bovine serum albumin, and horse heart myoglobin. The magnetic property of the particles permits an easy and speedy enrichment process. No enrichment of phosphopeptides was observed from ferric magnetic iron(III) oxide (Fe(2)O(3)) nanoparticles. These data collectively demonstrate that the enrichment of phosphopeptides using magnetic iron(II, III) oxide nanoparticles is a practical method for the selective analysis of phosphopeptides and could be helpful in isolating and analyzing phosphorylated peptides from complex biological samples.  相似文献   

17.
Fe3O4/polyaniline (PANI) composite hollow spheres were prepared by using sulfonated polystyrene (SPS) microspheres as templates. The sulfonic acid groups were applied to induce absorbing Fe3O4 nanoparticle, and subsequently, conductive PANI was grown. Finally, the polystyrene cores were selectively dissolved to yield composite hollow microspheres with electromagnetic properties. The analysis results indicated that the adsorption of Fe3O4 on template core by electrostatic interaction resulted in magnetic composite microspheres. The conductivity of composite hollow spheres was remarkably increased after polyvinylpyrrolidone modification which favored the growth of PANI on SPS/Fe3O4 and enhanced the integrity of hollow microspheres. The saturated magnetization of the composite hollow microspheres was tuned from 2.7 to 9.1 emu/g, and the conductivity was in the range from 10?2 to 100?S/cm.  相似文献   

18.
采用静电逐层自组装的方法,首先将PSS和PAH聚电解质交替沉积在CaCO3中空微球表面,然后将Fe3O4磁性纳米粒子与CdSe量子点负载在中空微球表面不同的聚电解质层中,制备出具有磁性和荧光双重功能的复合微球,并将其作为荧光离子探针,研究了其对Cu2+和Pb2+离子检测的灵敏度、选择性及可行性。结果表明,复合微球显示出良好的磁性和荧光性能,对Cu2+和Pb2+离子的检测具有较高的灵敏度和选择性。尤为重要的是,可通过磁分离的方法将微球快速地从待测液中回收,从而能够避免量子点对环境造成的二次污染。  相似文献   

19.
In our current work, we describe how open tubular‐immobilized metal‐ion affinity chromatography (OT‐IMAC) capillary columns connected to a solid phase microextraction (in‐tube SPME) device can be used for the enrichment of phosphopeptides. A phosphonate modified silica nanoparticle (NP)‐deposited capillary was prepared by liquid phase deposition (LPD), and used for the immobilization of Fe3+, Zr4+ or Ti4+. The enrichment capacities of three different OT‐IMAC capillary columns were compared by using tryptically digested α‐casein as sample. The improved extraction efficiency in our technique was demonstrated by comparing to a directly modified capillary, and a comparison of phosphopeptide extraction from simple and complex samples was tested for both modes. Our results show that the NP‐IMAC‐Zr4+ capillary column can be used to selectively isolate phosphopeptides from real samples, and can enrich for β‐casein phosphopeptides from concentrations as low as 1.7×10?9 M.  相似文献   

20.
The interactions of two model phosphoproteins (porcine pepsin and ovalbumin) with two different immobilized metal affinity chromatography (IMAC) sorbents containing immobilized Fe3+, Ga3+, and UO2 2+ ions have been investigated under various conditions. Both proteins were adsorbed on immobilized uranyl ions under acidic conditions similar to those on immobilized Fe3+ and Ga3+ ions. The retained proteins could be released either by the presence of phosphate ions in the elution buffer (immobilized Ga3+ and Fe3+ ions) or by an increased pH (all tested immobilized ions). The IMAC sorbents employed could be used under the conditions of high-performance chromatography and are suitable for the separation and analysis of intact phosphoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号