首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
The oxidative coupling of methane (OCM) to ethylene over a perovskite titanate catalyst in a fixed bed reactor was studied experimentally and numerically. The two-dimensional steady state model accounted for separate energy equations for the gas and solid phases coupled with an experimental kinetic model. A lumped kinetic model containing four main species CH4, O2, COx (CO2, CO), and C2 (C2H4 and C2H6) was used with a plug flow reactor model as well. The results from the model agreed with the experimental data. The model was used to analyze the influence of temperature and feed gas composition on the conversion and selectivity of the reactor performance. The analytical results indicate that the conversion decreases, whereas, C2 selectivity increases by increasing gas hourly space velocity (GHSV) and the methane conversion also decreases by increasing the methane to oxygen ratio.  相似文献   

2.
Oxidative coupling of methane is a direct way to obtain C2 hydrocarbon,and Mn-Na-W/SiO2 catalyst is the most promising among all the catalysts.The 2%Mn/5%Na2WO4/SiO2 catalyst was prepared by the incipient wetness impregnation method.A 7-step heterogeneous reaction model of the oxidative coupling of methane to C2 hydrocarbons was conducted by co-feeding methane and oxygen at a total pressure of 1 bar over the catalyst.The kinetic measurements were carried out in a micro-catalytic fixed bed reactor.The kinetic data were obtained at the appropriate range of reaction conditions (4 kPa<Po2 <20 kPa,20 kPa<PCZH4 <80 kPa,800℃<T<900℃).The proposed reaction kinetic scheme consists of three primary and four consecutive reaction steps.The conversions of hydrocarbons and carbon oxides were evaluated by applying Langrnuir-Hinshelwood type rate equations.Power-law rate equation was applied only for the water-gas shift reaction.In addition,the effects of operating conditions on the reaction rate were studied.The proposed kinetic model can predict the conversion of methane and oxygen as well as the yield of C2 hydrocarbons and carbon oxides with an average accuracy of ±15%.  相似文献   

3.
A comprehensive kinetic model for oxidative coupling of methane(OCM)over Mn and/or W promoted Na2SO4/SiO2 catalysts was developed based on a micro-catalytic reactor data.The methane conversion and ethylene,ethane,carbon monoxide and carbon dioxide selectivities were obtained in a wide operating condition range of 750 - 825-C,CH4/O2=2.5 - 10 and contact time=267 - 472 kg s m-3.Reaction networks of six models with different rate equation types were compared together.The kinetic rate parameters of each reaction network were estimated using linear regression or genetic algorithm optimization method(GA).A reaction network suggested by Stansch et al.for OCM was found to be the best one and was further used in this work.The suggested model could predict the experimental results of OCM reaction within a deviation range of ± 20%.  相似文献   

4.
A simplified kinetic model for the oxidative coupling of methane over a La0.6Sr0.4Co0.8Fe0.2O3-δ nanocatalyst is presented. The kinetic model was developed by experimental data in a catalytic micro-reactor covering a wide range of reaction conditions (0.04相似文献   

5.
Overall kinetic studies on the oxidative coupling of methane, OCM, have been conducted in a tubular fixed bed reactor, using perovskite titanate as the reaction catalyst. The appropriate operating conditions were found to be: temperature 750-775 ℃, total feed flow rate of 160 ml/min, CH4/O2 ratio of 2 and GHSV of 100 min-1. Under these conditions, C2 yield of 28% was achieved. Correlations of the kinetic data have been performed with lumped rate equations for C2 and COx formation as functions of temperature, O2 and CH4 partial pressures. Six models have been selected among the common lumped kinetic models. The selected models have been regressed with the experimental data which were obtained from the Catatest system by genetic algorithm in order to obtain optimized parameters. The kinetic coefficients in the overall reactions were optimized by different numerical optimization methods such as: the Levenberg-Marquardt and genetic algorithms and the results were compared with one another. It has been found that the Santamaria model is in good agreement with the experimental data. The Arrhenius parameters of this model have been obtained by linear regression. It should be noted that the Marquardt algorithm is sensitive to the first guesses and there is possibility to trap in the relative minimum.  相似文献   

6.
In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane(OCM)over titanite pervoskite is developed.The method is based on a computational fluid dynamics(CFD)code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst(7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor.  相似文献   

7.
Na-Mn-W/SiO2 catalysts were studied for the oxidative coupling of methane (OCM) in a micro fixed bed reactor made of stainless steel reactor at elevated pressures. The effect of operating conditions, such as GHSV, pressure, temperature and CH4/O2 ratio on the catalytic performance of OCM was investigated. The C2+ selectivity of 80.3% was obtained at a CH4 conversion of 16.1% at 750℃, 1.5×105h-1 GHSV, and 0.6 MPa. Also, there is a small output of C3 and C4 hydrocarbons in the tail gas. The results show that unfavorable effects due to elevated pressure can be overcome by increasing GHSV, and the OCM reaction is strongly dependent on the operating conditions at elevated pressures, particularly GHSV and the CH4/O2 ratio.  相似文献   

8.
A three-dimensional geometric model of the oxidative coupling of methane(OCM) packed-bed reactor loaded with Na2WO4-Mn/Si O2 particulate catalyst was set up, and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software. The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant was 80 m L/min under standard state, the ratio of CH4/O2 was 3, the temperature and pressure were 800°C and 1 atm,respectively. The contour of the characteristics parameters in the catalyst bed was analyzed, such as the species mass fractions, temperature,the heat flux on side wall surface, pressure, fluid density and velocity. The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity to products(C2H6, C2H4, CO2, CO) in the reactor outlet with an error range of ±2%. The mass fractions of CH4 and O2decreased from 0.6 and 0.4 in the catalyst bed inlet to 0.436 and 0.142 in the outlet, where the mass fractions of C2H6, C2H4, CO and CO2 were 0.035, 0.061, 0.032 and 0.106, respectively. Due to the existence of laminar boundary layer,the contours of each component bent upwards in the vicinity of the boundary layer. This OCM reaction was volume increase reaction and the total moles of products were greater than those of reactants. The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg/m3 in the inlet of the catalyst bed to 2.22 kg/m3 in the outlet of the catalyst bed, while the velocity increased from 0.108 m/s to 0.115 m/s.  相似文献   

9.
The temperature of the catalyst bed in the oxidative coupling ofmethane would rise and be higher than the wall temperature when the amountof catalyst, the space velocity and the ratio of oxygen to methane wereincreased. Various aspects of the catalytic technology including the thickness ofthe catalyst bed, the mode of catalyst charge, the ratio of CH_4 to O_2 and thespece velocity were studied. An optimum temperature of the catalyst bed forhigher methane conversion and C_2 selectivity was investigated. It was foundthat the burning of methane in the gas phase to form CO occurred at certaintemperatures with some ratios of oxygen to methane. Additionally, the effectof adding water to the reaction feed gas was studied.  相似文献   

10.
The study of scale up for the oxidative coupling of methane (OCM) has been carried out in a 200 ml stainless steel fixed-bed reactor over a 5wt% Na2WO4-1.9wt% Mn/SiO2 (W-Mn/SiO2) catalyst. The effects of reaction conditions were investigated in detail. The results showed that, with increasing reaction temperature, the gas-phase reaction was enhanced and a significant amount of methane was converted into COx; with the CH4/O2 molar ratio of 5, the highest C2 (ethylene and ethane) yield of 25% was achieved; the presence of steam (as diluent) had a positive effect on the C2 selectivity and yield. Under lower methane gaseous hourly space velocity (GHSV), higher selectivity and yield of C2 were obtained as the result of the decrease of released heat energy. In 100 h reaction time, the C2 selectivity of 66%-61% and C2 yield of 24.2%-25.4% were achieved by a single pass without any significant loss in catalytic performance.  相似文献   

11.
低温甲烷氧化偶联Li- ZnO/La2O3催化剂   总被引:4,自引:0,他引:4  
采用浸渍法制备了Li- ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能. 反应条件下, 在考察的w(Li)=2%和w(ZnO)=20%的Li- ZnO/La2O3在680 ℃得到了甲烷转化率为27.3%, C2选择性为65.2%, C2收率为17.8%的结果;在700 ℃, C2收率达到21.8%. Raman和XPS表征结果表明, 催化剂低温催化性能与表面的活性吸附氧物种含量相关;La2O2CO3物种可能是提高催化剂的C2选择性的关键.  相似文献   

12.
13.
报道了CeO_2-W-Mn/SiO_2催化剂常压和加压条件下的甲烷氧化偶联反应性能, 详细考察了反应条件对CeO_2-W-Mn/SiO_2催化剂反应性能的影响. 结果表明, CeO_2-W-Mn/SiO_2催化剂具有优异的催化活性, 常压下可得到29.7%的甲烷转化率和81.3%的C_2烃选择性, 低温活性高, 于710 ℃可得到甲烷转化率11.4%和C_2烃选择性86.7%的结果;该催化剂适宜于加压条件下的甲烷氧化偶联反应, 0.6 MPa下可获得37.2%的甲烷转化率和73.8%的C_2烃选择性. 催化剂表征结果显示CeO_2的加入增强了W-Mn/SiO_2催化剂的储氧能力.  相似文献   

14.
Na-Mn-W/SiO2 catalysts were studied for the oxidative coupling of methane (OCM) in a micro fixed bed reactor made of stainless steel reactor at elevated pressures. The effect of operating conditions, such as GHSV, pressure, temperature and CH4/O2 ratio on the catalytic performance of OCM was investigated. The C2+ selectivity of 80.3% was obtained at a CH4 conversion of 16.1% at 750℃,1.5× 105h-1 GHSV, and 0.6 MPa. Also, there is a small output of C3 and C4 hydrocarbons in the tail gas. The results show that unfavorable effects due to elevated pressure can be overcome by increasing GHSV, and the OCM reaction is strongly dependent on the operating conditions at elevated pressures,particularly GHSV and the CH4/O2 ratio.  相似文献   

15.
A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas, on the catalytic performance were investigated. The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm. Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%, respectively, as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.  相似文献   

16.
A new approach to the preparation of systems that exhibit catalytic activity in the oxidative coupling of methane (OCM) is considered. With the use of ferrospheres separated from power-generation ashes from different sources as an example, it was demonstrated that OCM catalysts can be prepared by the crystallization/solidification of oxide melts with the formation of microspherical particles. The dependence of activity and selectivity for the oxidative reforming of methane on the ferrospheres containing from 36.2 to 92.5 wt % Fe2O3 into the products of deep oxidation and OCM was studied. It was found that deep oxidation reactions on ferrospheres with Fe2O3 contents higher than 85% were suppressed, and the main reaction path of CH4 conversion was its oxidative coupling with the formation of C2 products (with selectivity to 60% at 750°C); moreover, the selectivity for C2 formation in this region was proportional to the concentration of Fe2O3. Phases responsible for the catalytic conversion of methane into CO x and OCM products were considered, and it was shown that the catalytic activity and selectivity of the oxidative transformation of CH4 on ferrospheres is determined by the position of the point that corresponds to their composition on a phase diagram of CaO-Fe2O3-SiO2.  相似文献   

17.
刘育  徐法强 《分子催化》1994,8(2):138-142
直接利用甲烷氧化偶联产物中的稀乙烯制环氧乙烷刘育,徐法强,沈师孔(中国科学院兰州化学物理研究所,兰州,730000)关键词乙烯环氧化,甲烷氧化偶联,负载银催化剂1.前言甲烷氧化偶联(OCM)是一个产物较为复杂的反应,从目前研究结果来看,产物中C2烃总...  相似文献   

18.
邹世辉  李志年  周秋月  潘洋  袁文涛  贺磊  王申亮  文武  刘娟娟  王勇  杜永华  杨玖重  肖丽萍  小林久芳  范杰 《催化学报》2021,42(7):1117-1125,中插16-中插20
天然气作为一种低碳清洁能源,其储量大,价格低,被认为是最有前途的石油替代资源之一.而以天然气的主要成分——甲烷为原料来生产高价值化学品被认为是石化工业中实现天然气取代石油为原料新化工路线的技术基础,具有极为可观的社会经济价值.目前甲烷的化学利用主要采用间接转化法,即先从甲烷制合成气,再由合成气制备各种化工原料和油品.但该路线流程复杂,能耗大,生产成本高及投资大,具有明显的局限性,这促使着人们不断探索能量效率更高的甲烷直接转化技术.甲烷氧化偶联(OCM)是最重要的甲烷直接转化技术之一.自1982首次报道以来,人们开发了1000多种OCM催化剂,涉及元素超过68种,但C2烃类(乙烷和乙烯)的收率普遍低于30%,尚未实现工业化.传统研究认为,OCM反应遵循“多相-均相”催化反应机理,甲烷在催化剂表面活化产生甲基自由基后,在气相中进行偶联生成乙烷和乙烯等产物.由于高温下甲基自由基很容易脱附到气相,传统的OCM催化剂一般只在甲基自由基的产生这一步发挥作用.而随后在气相中发生的甲基自由基均相反应并不受催化剂控制,在热力学驱动下,会倾向于深度氧化生成CO2等副产物,因此OCM反应中C2的收率上限为25%–28%.理论上来说,只有当催化剂能够在甲基自由基偶联这一步发挥作用时,C2物种的收率才可能打破上限,但目前尚未有催化剂实现甲基自由基可控表面偶联.本文提出并证实5wt%Na2WO4/SiO2(5NaWSi)具有催化甲基自由基表面偶联的能力.在低温下,5NaWSi本身对于OCM没有催化活性,但是它的加入能够显著提高La2O3催化剂的C2选择性,进而提高C2收率,使其在570℃的低温下即可达到10.9%的C2收率.在La2O3和5NaWSi之间加入一层甲基自由基淬灭剂——石英砂,这种提升作用随即消失,表明甲基自由基在5NaWSi上的表面偶联可能是C2选择性和收率提升的主要原因.本文进一步采用同步辐射光电离质谱技术原位检测了反应过程中的自由基中间体,结果发现,La2O3表面产生的甲基自由基确实可以在5NaWSi表面进行偶联,进而提高C2的选择性和收率.通过对5NaWSi的组成和结构进行分析,发现5NaWSi中的Na2WO4纳米团簇可能是甲基自由基偶联的活性位点,该位点不仅具有很强的甲基自由基吸附能力,为甲基自由基表面偶联提供机会,同时不会深度氧化C2物种,有效地提高了C2选择性.以此为基础建立理论模型,我们通过DFT计算对甲基自由基在5NaWSi表面的偶联机制进行了研究.结果表明,5NaWSi对甲基自由基具有很强的吸附能力,而吸附后的甲基自由基更倾向于偶联生成C2产物,而不是β-H消除生成HCHO等副产物,表明5NaWSi确实是很好的甲基自由基表面偶联催化剂.甲基自由基表面偶联的证实为OCM催化剂的开发开辟了新方向.从双功能催化剂设计的角度出发,将OCM反应分解成甲烷活化和甲基自由基偶联这两个部分,并分别针对这两个部分来筛选和优化催化剂,将有望突破C2收率上限,进而推进OCM的工业化进程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号