首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 227 毫秒
1.
微细腔内重整积炭会引起催化剂失活和孔道堵塞,甲烷低温自热重整技术的提出,既有利于实现微燃烧器中甲烷的持续稳定燃烧,又能有效降低热点和减少积炭。通过热力学分析,探讨常压下反应温度低于973K时微细腔内自热重整积炭的影响因素及重整特性。结果表明,温度、空碳比及水碳比对积炭生成有重要影响。微细腔内积炭含量随温度升高先增大后减小;贫氧环境下,空碳比和水碳比的增加不仅对减少积炭有效,对氢气产生也有利;同时,甲烷自热重整系统与无水系统相比减碳性能优越。甲烷质量流量为6.6g/h、空碳比和水碳比分别为2和1时,积炭产生的温度为680K~850K,并在785K达到积炭质量分数的最大值为0.66%,此时甲烷转化率和氢气质量含量分别为53.43%和2.37%;且消碳对应的空碳比和水碳比分别约为2.4和1.1。  相似文献   

2.
为了实现微燃烧器内甲烷持续稳定燃烧,要求进一步深入研究原料气中含湿量变化对微细腔甲烷湿空气低温(小于973 K)重整反应的影响.于此,本文通过热力学方法分析了 0.1 MPa下一定温度时,恒定原料气流量和恒定空碳比两种工况中,含湿量在欠氧和低温环境中对微细腔甲烷自热重整反应中积炭、甲烷转化、产氢特性及反应过程的影响.结果表明:微细腔内甲烷质量流量一定时,随着含湿量增加,积炭逐渐减小,甲烷转化率先减小后增加,氢气则一直随之增加.体系中甲烷的转化以生成CO2为主,CO的选择率随含湿量增加先增加后减小,CO2选择率则一直增加;增加含湿量会使反应后体系中水的含量增加,也会促使反应过程中体系消耗的水量最终大于生成的水量.在含湿量不超过空气量的反应条件下,两种工况中反应前后水质量分数的变化量均在含湿量达280 g·kg-1后显示出体系以消耗水为主,且原料气中湿空气的含湿量均应满足最低为350 g·kg-1,才有利于反应过程中减少积炭产生和促进重整反应,当达到这一条件时,恒定的空碳比在获得较高的甲烷转化率和氢气产率上更具优势.  相似文献   

3.
甲烷自热重整制氢热力学分析   总被引:9,自引:1,他引:9  
为了优化甲烷自热重整制氢过程的反应条件,运用吉布斯自由能最小化方法对过程进行了热力学计算,研究了重整过程的反应温度、空碳比、水碳比对平衡组成的影响。模拟结果表明,适宜的水碳比为2.5~3.5,空碳比2.0~3.5,重整温度700℃~850℃,每摩尔甲烷生成2.17mol~2.23mol氢;以水碳比1.5为例,对不同空碳比下的组分的产生和转化的机理进行了分析。  相似文献   

4.
甲烷无氧芳构化(MDA)和甲烷水蒸气重整(MSR)的耦合反应可以大幅度提高甲烷无氧芳构化反应的稳定性.单独的甲烷无氧芳构化反应失活较快,甲烷转化率从0.5 h的14.5%很快下降至15 h的3.5%.而采用联合MSR/MDA反应体系,甲烷的转化率从12.5 h的11.5%非常缓慢地下降至60 h后的6.5%.MSR反应原位生成的CO和H2能降低反应中生成的CHr物种数量,减少催化剂上积炭的牛成,进而延长反应时间.MSR反应过程中高比例H2的生成更能有效地减少与B酸相关的积炭的生成,从而更好地抑制反应的失活.  相似文献   

5.
对甲烷自热重整进行了系统的热力学分析,并采用预混合层流模型结合甲烷氧化、蒸汽重整、干重整机理对反应过程进行了动力学分析。结果表明,甲烷自热重整的平衡产物及其浓度主要受温度、O2/CH4、H2O/CH4的影响;压力影响不是十分明显,主要影响达到平衡的速度。在715℃~730℃、压力0.7MPa~1.0MPa,控制O2/CH4在0.60~0.70、H2O/CH4在3.15~3.25,可以得到H2>68%、CO<10%的产物气,积炭率接近于0。动力学分析表明,自热重整过程分为两个主要阶段进行,在起始阶段主要发生甲烷氧化反应,产物主要为H2O和CO2;第二阶段以甲烷蒸汽重整反应为主,伴随水气变换反应(WGS)和微弱的干重整,H2CO和CO2为主要产物。调节初始水浓度可以控制快速氧化阶段反应速率,避免“热点”出现,抑制CO的生成。  相似文献   

6.
采用浸渍法制备了Ni/MgO与Ni/O-D(氧化金刚石)催化剂,分别研究了反应温度和空速对甲烷催化裂解转化率的影响,并利用XPS、SEM、EDS等测试技术对催化剂进行了表征. 结果表明,33Ni/O-D和41Ni/MgO分别在500与650 ℃能长时间维持其催化活性,前者在150 min内的甲烷转化率>8%,后者则在120 min内的甲烷转化率>25%;甲烷初始转化率随裂解反应温度升高而增大,但温度过高导致催化剂迅速失活;降低空速有利于提高甲烷的转化率,但却会降低氢气产量;甲烷裂解生成的碳产物形貌取决于载体和催化反应条件,较低温度(500和550 ℃)下,Ni/O-D表面的裂解碳呈现出纤维状,在650 ℃以上则表现为板结颗粒堆积并将Ni完全覆盖,但该温度下的Ni/MgO表面仍能形成碳纤维,并随空速降低存在直径增加的趋势.  相似文献   

7.
我们研究了镍-铁双金属催化剂在乙酸水蒸气重整制氢反应中的催化性能.研究结果显示单金属铁催化剂对乙酸重整反应活性很低,但是对一氧化碳的中温变换反应有较好的催化性能.镍单金属催化剂对乙酸水蒸气重整制氢反应有非常好的初始催化活性,但是催化剂的长期稳定性很差.镍-铁复合催化剂的低温活性(623 K)和长期稳定性(100 h)都远好于单金属催化剂.这主要是因为铁的加入可以促进镍的分散,形成更多的表面活性位同时有助与防止镍的烧结.我们也对乙酸重整反应中的两个主要气体副产物(一氧化碳和甲烷)的反应路径进行了分析.研究发现反应温度决定一氧化碳和甲烷的反应路径.673 K是一个临界温度.低于此温度,甲烷的产生主要来自于一氧化碳和二氧化碳的甲烷化,而高于673 K,甲烷主要来自于乙酸的直接裂解.对于一氧化碳副产物而言,低于673 K其主要来自于乙酸的裂解或者不充分的水蒸气重整反应,而高于673 K产生的一氧化碳则主要来自与逆水煤气变换反应.  相似文献   

8.
焦炉煤气甲烷重整制氢热力学分析和实验研究(英文)   总被引:1,自引:0,他引:1  
对焦炉煤气甲烷部分氧化重整热力学进行分析,考察反应温度、CH4/O2摩尔比及水蒸气加入量等因素对重整性能的影响,并分析焦炉煤气原始氢含量对其部分氧化重整性能的影响.分析结果表明甲烷转化率均随CH4/O2摩尔比和水蒸气加入量的增大以及反应温度的升高而增大.在CH4/O2摩尔比1.7-2.1,温度825-900℃及压力1.01×105Pa的反应条件下,可得较好重整性能;甲烷转化率,氢及一氧化碳的选择性分别为91.0%-99.9%,87.0%-93.4%和100%-107%,重整后得到的氢量增大到原始氢量的1.95-2.05倍,每摩尔焦炉煤气消耗的热量仅为2.94J,同时得出在CH4/O2摩尔比2,温度825-900℃及1.01×105Pa条件下,往焦炉煤气内添加体积分数为2%-4%的水蒸气时重整性能得到较大提高;重整后甲烷转化率、氢及一氧化碳选择性分别由92.6%、87.2%、104%增大到98.6%、96.4%、107%.并在BaCo0.7Fe0.2Nb0.1O3-δ透氧膜反应器上研究NiO/MgO固溶体催化剂焦炉煤气部分氧化重整性能.结果表明该重整反应效果较好,于875℃下获得16.3mL.cm-2.min-1透氧量,95%甲烷转化率及80.5%氢和106%一氧化碳选择性.且所得实验结果与热力学分析结果符合较好,表明NiO/MgO固溶体催化剂有较好的催化重整性能.  相似文献   

9.
用高硅含磷五员环沸石分子筛(商品代号HZRP-1)作为载体,制备了Mo/HZRP-1催化剂.与Mo/HZSM-5相比,Mo/HZRP-1对甲烷无氧脱氢芳构化反应也表现出较好的催化性能.实验过程中,在反应气中添加N2作为内标物,给出包括甲烷在Mo/HZRP-1上的结焦量、转化率及各产物选择性在内的总碳物料平衡计算结果.考察了不同Mo担载量对催化剂性能和积炭行为的影响;重点考察了不同温度焙烧后20%Mo/HZRP-1催化剂的性能和积炭行为.在反应的初始阶段,6%Mo/HZRP-1表现出很高的活性:反应进行30 min时,甲烷转化率为11%,芳烃选择性达81%,而催化剂的结焦选择性仅为12%.BET,NH3-TPD和催化反应等表征结果表明:Mo物种的数量和状态,分子筛的酸强度和酸量以及分子筛的孔道结构是决定甲烷无氧脱氢芳构化反应性能和积炭行为的关键因素.  相似文献   

10.
 采用硝酸镍和硝酸铈水溶液共浸渍薄水铝石制备了 Ni/CeO2/Al2O3 催化剂, 并将其用于低水碳摩尔比条件下商用液化石油气 (LPG) 预重整反应. 考察了 Ni 含量和反应温度对催化剂性能的影响. 结果表明, 在 300~400 oC 和水碳摩尔比为 1.0 的条件下, 该催化剂具有很高的催化 LPG 预重整反应活性. 15%Ni/CeO2/Al2O3 催化剂在 350 oC, 3 000 ml/(g•h) 和水碳摩尔比 1.0 的条件下, 反应 105 h 后 LPG 转化率和产气组成均保持不变, 表现出较高的稳定性. 反应后催化剂表面没有明显的积炭.  相似文献   

11.
A thermodynamic analysis of methane oxidative reforming was carried out by Gibbs energy minimization (at constant pressure and temperature) and entropy maximization (at constant pressure and enthalpy) methods,to determine the equilibrium compositions and equilibrium temperatures,respectively.Both cases were treated as optimization problems (non-linear programming formulation).The GAMS 23.1 software and the CONOPT2 solver were used in the resolution of the proposed problems.The hydrogen and syngas production were favored at high temperatures and low pressures,and thus the oxygen to methane molar ratio (O 2 /CH 4) was the dominant factor to control the composition of the product formed.For O 2 /CH 4 molar ratios higher than 0.5,the oxidative reforming of methane presented autothermal behavior in the case of either utilizing O 2 or air as oxidant agent,but oxidation reaction with air possessed the advantage of avoiding peak temperatures in the system,due to change in the heat capacity of the system caused by the addition of nitrogen.The calculated results were compared with previously published experimental and simulated data with a good agreement between them.  相似文献   

12.
Low-temperature steam conversion (LTSC) of a methane-butane mixture (95% methane and 5% butane) into a methane-rich gas over an industrial Ni-based catalyst has been studied with the following reaction conditions: temperature 200–320°C, pressure 1 bar, gas hour space velocity 1200–3600 h–1, and steam to carbon ratio 0.64. A three-step macrokinetic model has been suggested based on the kinetic parameters found. The model includes the following reactions: (1) irreversible steam reforming; (2) CO2 methanation, which occurs in a quasi-equilibrium mode at temperatures above 260°C; (3) hydrogenolysis of propane and butane, which is essential at temperatures below 260°C. Steam reforming was shown to limit the overall reaction rate, whereas hydrogenolysis and CO2 methanation determined the product distribution in low- and high-temperature regions, respectively. Temperature dependencies of the product distribution for the LTSC of a model ternary methane-propane-butane mixture (85% methane, 10% propane, and 5% butane) have been successfully simulated using the three-step model suggested.  相似文献   

13.
The methane oxidation activities of Pt−NiO and Co−NiO bimetallic catalysts have been investigated as part of a larger research program on the autothermal reforming of methane (combined methane oxidation and steam reforming) in a fluidized bed reactor. Experiments at atmospheric pressure and 783–1023 K for both catalysts showed that the reaction was more selective towards H2 production at CH4∶O2 ratios greater than unity. Light-off temperature increased with decreasing CH4∶O2 ratios, but increase in gas velocity (beyond minimum fluidization) increased the light-off temperature. Co−NiO was as promising as the more expensive Pt−NiO catalyst for the oxidation.  相似文献   

14.
Ni/ZrO2催化剂上甲烷水蒸气重整反应的研究   总被引:4,自引:2,他引:4  
研究了Ni/ZrO2催化剂对甲烷水蒸气重整制合成气的反应性能。考察了催化剂的还原温度、载体焙烧温度以及反应温度、原料配比和空速等对催化剂性能的影响。利用XRD、TEM、XPS等手段对催化剂的织构形貌进行了表征。研究表明,Ni/ZrO2催化剂用于甲烷水蒸气重整制合成气不仅具有较高的活性,也具有较好的稳定性。水蒸气比增加,CH4转化率增大、CO选择性下降。CH4转化率及CO选择性均随空速增大而下降。使用10%Ni/ZrO2催化剂,在650 ℃、空速1.984×104 h-1、原料气配比H2O∶CH4∶N2=2∶1∶2.67的条件下,获得CH4转化率85%、CO选择性70%的结果。  相似文献   

15.
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst.The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS.Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature,and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts.Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ.  相似文献   

16.
采用自制的介质阻挡放电实验系统,进行了甲烷/水蒸气大气压下重整制氢实验研究。考察了水碳比(水蒸气/甲烷物质的量比)、气体总流量、放电电压和放电频率对甲烷转化率及氢气等主要产物产率的影响。结果表明,甲烷转化率和氢气产率随着水碳比和放电电压的增加而增大,随着气体总流量和放电频率的增加呈现先增大后减小的变化规律。在放电电压18.6 kV、放电频率9.8 kHz、水碳比3.4、反应气体总流量79 mL/min时,获最大氢气产率(14.38%)。此外,利用发射光谱对放电过程中的活性基团进行了原位诊断,得到了CH·、OH·、H2及Hα活性粒子的光谱信号强度随实验参数的变化规律,并结合放电机理推测了氢气的生成路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号