首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A new complex consisting of CdTe quantum dots (QDs) and glucose oxidase (GOx) has been facilely assembled to achieve considerably enhanced enzymatic activity and a wide active temperature range of GOx; these characteristics are attributed to the conformational changes of GOx during assembly. The obtained complex can be simultaneously used as a nanosensor for the detection of glucose with high sensitivity. A mechanism is put forward based on the fluorescence quenching of CdTe QDs, which is caused by the hydrogen peroxide (H2O2) that is produced from the GOx-catalyzed oxidation of glucose. When H2O2 gets to the surface of the CdTe QDs, the electron-transfer reaction happens immediately and H2O2 is reduced to O2, which lies in electron hole traps on CdTe QDs and can be used as a good acceptor, thus forming the nonfluorescent CdTe QDs anion. The produced O2 can further participate in the catalyzed reaction of GOx, forming a cyclic electron-transfer mechanism of glucose oxidation, which is favorable for the whole reaction system. The value of the Michaelis-Menton constant of GOx is estimated to be 0.45 mM L(-1), which shows the considerably enhanced enzymatic activity measured by far. In addition, the GOx enzyme conjugated on the CdTe QDs possesses better thermal stability at 20-80 degrees C and keeps the maximum activity in the wide range of 40-50 degrees C. Moreover, the simply assembled complex as a nanosensor can sensitively determine glucose in the wide concentration range from micro- to millimolar with the detection limit of 0.10 microM, which could be used for the direct detection of low levels of glucose in biological systems. Therefore, the established method could provide an approach for the assembly of CdTe QDs with other redox enzymes, to realize enhanced enzymatic activity, and to further the design of novel nanosensors applied in biological systems in the future.  相似文献   

2.
A highly specific and sensitive method for glucose quantification in human serum samples based on on‐column enzymatic assay is described. In this method, the head of the capillary was used as a nanoliter‐microreactor, the diluted samples spiked with a novel fluorogenic reagent named 2‐[6‐(4′‐amino) phenoxy‐3H‐xanthen‐3‐on‐9‐yl] benzoic acid (APF), and the mixed enzyme solutions of glucose oxidase (GOx) and horseradish peroxidase (HRP), were individually injected into the capillary. Hydrogen peroxide (H2O2) generated in situ by catalytic reaction between GOx and glucose, activates APF in the presence of HRP to form a highly fluorescent product, which was electrophoretically separated from the unreacted APF and detected by the LIF detector. The proposed method allowed the determination of glucose down to 10 nM in real samples, with RSD values lower than 3.5%, which also has the potential for measurements of multicomponents in many other systems including measurement of α‐glucosidase activity and screening for its inhibitors.  相似文献   

3.
Huang X  Lan T  Zhang B  Ren J 《The Analyst》2012,137(16):3659-3666
In this paper, we report a new strategy for highly sensitive determination of hydrogen peroxide, glucose and uric acid based on fluorescence resonance energy transfer (FRET) using gold nanoparticles (AuNPs) as energy acceptors. The principle is based on highly sensitive reaction of tetramethyl rhodamine (TMR) labeled tyramide and hydrogen peroxide catalysed by horseradish peroxidase (HRP), and the fluorescence spectrum of TMR (EX(max) 575 nm) partially overlaps with the visible absorption bands of AuNPs. We demonstrated an efficient FRET between tyramide labeled TMR (as energy donors) and HRP (BSA) conjugated AuNPs (as energy acceptors) due to the formation of TMR-labeled HRP-AuNPs or TMR-labeled BSA-AuNPs in the presence of H(2)O(2). We observed that the quenching of the fluorescence signal depended linearly on the H(2)O(2) concentration within a range of concentrations from 25 to 400 nM and the detection limit of this assay was 10 nM. Based on the principle for determination of H(2)O(2), we developed a new strategy for assay of glucose and uric acid by coupling with glucose oxidase (GOx)-mediated and uricase-mediated reaction. The established methods were successfully used for determination of glucose and uric acid levels in human sera, and the results obtained are in good agreement with commercially available methods. Our methods are at least 1 order of magnitude more sensitive than the commercially available methods. More importantly, our method described here can be extended to other assay designs using different oxidase enzymes, energy donors and energy acceptors, such as fluorescent quantum dots, near-infrared (NIR)-to-visible upconversion nanoparticles and even other metallic nanoparticles.  相似文献   

4.
Amperometric bienzyme electrodes with horseradish peroxidase (HRP) and glucose oxidase (GOx) co-immobilized on polymethylferrocenyl dendrimers deposited onto platinum electrodes have been used for determination of the hydrogen peroxide produced by the oxidase during the enzymatic reaction. The redox dendrimers consist of flexible poly(propylenimine) dendrimer cores functionalised with octamethylferrocenyl units. The effects of dendrimer generation, the thickness of the dendrimer layer, substrate concentration, interferences, and reproducibility on the response of the sensors were investigated. The new bienzyme biosensors respond to substrate at work potential values between 200 and 50 mV (vs. SCE), have good sensitivity, and are resistant to interferences. Figure  相似文献   

5.
The elementary steps of the enzymatic oxidation of nifedipine (NF) catalyzed by horseradish peroxidase (HRP) have been described based on analysis of kinetic magnetic field effects (MFEs). It has been shown that the first step of the catalytic cycle is single electron transfer resulting in formation of NF*(+) radical cation and ferroperoxidase (Per(2+)). As a result, comparison with an earlier studied oxidation reaction of NADH catalyzed by HRP evidenced that the enzymatic oxidations of two substrates-native, NADH, and its synthetic analogue, NF-catalyzed by HRP in the absence of H(2)O(2) follow identical mechanisms.  相似文献   

6.
Wang J  Wang F  Chen H  Liu X  Dong S 《Talanta》2008,75(3):666-670
In this paper, electrochemical surface plasmon resonance (SPR) method was first used to detect enzymatic reaction in bilayer lipid membrane (BLM) based on immobilizing horseradish peroxidase (HRP) in the BLMs supported by the redox polyaniline (PAn) film. By SPR kinetic curve in situ monitoring the redox transformation of PAn film resulted from the reaction between HRP and PAn, the enzymatic reaction of HRP with H(2)O(2) was successfully analyzed by electrochemical SPR spectroscopy. The results show that this BLM supported on PAn film cannot only preserve the bioactivity of HRP immobilized in the membrane, but also provide a channel for the transfer of electrons between HRP and PAn on electrode surface. These characteristics enabled the development of SPR biosensor for sensitively detecting H(2)O(2). H(2)O(2) has been detected by electrochemical SPR spectroscopy in the concentration range of 5 x 10(-5)M to 2 x 10(-3)M. After each of detections, the SPR sensor surface was completely regenerated by electrochemically reducing the oxidized PAn to its reduced state. This method provides a novel route for enhancing the detection of small ligand of enzymatic reaction in BLM by electrochemical SPR spectroscopy.  相似文献   

7.
Enzymatic reactions can consume endogenous nutrients of tumors and produce cytotoxic species and are therefore promising tools for treating malignant tumors. Inspired by nature where enzymes are compartmentalized in membranes to achieve high reaction efficiency and separate biological processes with the environment, we develop liposomal nanoreactors that can perform enzymatic cascade reactions in the aqueous nanoconfinement of liposomes. The nanoreactors effectively inhibited tumor growth in vivo by consuming tumor nutrients (glucose and oxygen) and producing highly cytotoxic hydroxyl radicals (⋅OH). Co-compartmentalization of glucose oxidase (GOx) and horseradish peroxidase (HRP) in liposomes could increase local concentration of the intermediate product hydrogen peroxide (H2O2) as well as the acidity due to the generation of gluconic acid by GOx. Both H2O2 and acidity accelerate the second-step reaction by HRP, hence improving the overall efficiency of the cascade reaction. The biomimetic compartmentalization of enzymatic tandem reactions in biocompatible liposomes provides a promising direction for developing catalytic nanomedicines in antitumor therapy.  相似文献   

8.
血红蛋白作为过氧化物模拟酶催化显色体系的研究与应用   总被引:7,自引:0,他引:7  
黄应平  蔡汝秀 《分析化学》2001,49(4):378-382
研究了以血红蛋白(Hemoglobin,Hb)作为过氧化物模拟酶对过氧化氢-4-氨基安替比林(4-Aminoantipyrine,4-AAP)氯取代苯酚衍生物显色体系的催化反应性能,探讨了不同氯取代苯酚类衍生物作为酶催化反应氢供体底物的构效关系及酶催化反应的可能机理。拟定了Hb催化H2O2氧化4-AAP-2,3,个三氯苯酚(2,3,4-Trichlorophenol,TCP)显色体系用于H2O2的测定方法。该方法测定H2O2灵敏度高,表观摩尔吸光系数为 2.21×104 L·mol-1·cm-1。将拟定方法与葡萄糖氧化酶催化反应偶联,用于人血清样品中葡萄糖含量的测定,得到满意的结果。  相似文献   

9.
《Electroanalysis》2004,16(12):988-993
In this work 3‐indoxyl phosphate (3‐IP), an alkaline phosphatase substrate, is demonstrated to be a suitable substrate for horseradish peroxidase (HRP). HRP catalyzes the oxidation of 3‐IP in presence of hydrogen peroxide (H2O2) generating the product indigo blue, which is an aromatic heterocycle compound insoluble in aqueous solutions. This product was easily converted into its soluble parent compound indigo carmine (IC) (by addition of fuming sulfuric acid to the reaction media) which has a reversible voltammetric peak at the formal potential of ?0.15 V (vs. Ag pseudo‐reference electrode) when a screen‐printed carbon electrode (SPCE) is used. Parameters that influence the enzymatic reaction, such as pH, temperature, substrate concentration and reaction time have been optimized. Moreover, the enzyme apparent kinetic constants (Vmax, KM) for both substrates (3‐IP and H2O2) have been calculated. Indirect measurements of HRP activity in solution were carried out not only by cyclic voltammetry but also using amperometric detection in a flow system. The detection limits were 6.86×10?12 and 5.68×10?12 M, respectively. Thus, 3‐IP is the first substrate that could be used for alkaline phosphatase (AP) and HRP, the most common enzymatic labels in affinity assays.  相似文献   

10.
本文合成了一种新型辣根过氧化物酶(HRP)荧光底物—4-羟基苯乙基吡啶(pHSP),并首次将它运用于酶联荧光免疫传感体系。对pHSP化学性质的研究证实,pHSP在空气中较稳定,对HRP、H2O2的荧光响应性能优于传统HRP荧光底物如对羟苯乙酸、Amplex Red和佳味醇等。pHSP本身只有极弱的荧光,在HRP催化下可被 H2O2氧化成二聚体产物,该二聚体在300 nm的激发光下能发射波长为437 nm的强荧光,并且反应体系的荧光增加与HRP量在一定浓度范围内成线形相关。根据此原理,建立了兔布氏杆菌抗体的酶联荧光传感分析新方法。运用制备的传感装置测定兔布氏杆菌抗体的线形范围为110-5 1.6 10-3 g/L,抗体检出限为110-5 g/L,相对标准偏差为4.1%(n=11)。 pHSP的二聚体产物水溶性很低,利用设计的装置较好地解决了传统测定溶液体系方法灵敏度打折的问题。  相似文献   

11.
Porous polymersomes based on block copolymers of isocyanopeptides and styrene have been used to anchor enzymes at three different locations, namely, in their lumen (glucose oxidase, GOx), in their bilayer membrane (Candida antarctica lipase B, CalB) and on their surface (horseradish peroxidase, HRP). The surface coupling was achieved by click chemistry between acetylene-functionalised anchors on the surface of the polymersomes and azido functions of HRP, which were introduced by using a direct diazo transfer reaction to lysine residues of the enzyme. To determine the encapsulation and conjugation efficiency of the enzymes, they were decorated with metal-ion labels and analysed by mass spectrometry. This revealed an almost quantitative immobilisation efficiency of HRP on the surface of the polymersomes and a more than statistical incorporation efficiency for CalB in the membrane and for GOx in the aqueous compartment. The enzyme-decorated polymersomes were studied as nanoreactors in which glucose acetate was converted by CalB to glucose, which was oxidised by GOx to gluconolactone in a second step. The hydrogen peroxide produced was used by HRP to oxidise 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to ABTS.+. Kinetic analysis revealed that the reaction step catalysed by HRP is the fastest in the cascade reaction.  相似文献   

12.
2-Hydroxy-1-naphthaldehyde thiosemicarbazon (HNT) had been synthesized and used as a new kind of substrate for horseradish peroxidase (HRP) in spectrofluorimetric determination of hydrogen peroxide (H(2)O(2)). The oxidation reaction of HNT with H(2)O(2) under the catalysis of HRP was studied in detail. The possible reaction mechanism was discussed. Under optimum experimental conditions, the oxidized product of HNT had excitation and emission maxima at 260 and 450 nm, respectively. The linear range of this method was 1.30 x 10(-9)-1.25 x 10(-5) mol l(-1) with a detection limit of 3.89 x 10(-10) mol l(-1). The effect of interferences, surfactants and organic solvents on the determination of H(2)O(2) had been investigated. A study to prove the existence of -O-O-H in PEGs was carried out. The proposed method was successfully applied to the determination of -O-O-H in polyethylene glycols.  相似文献   

13.
碳纳米管促进氧化还原蛋白质和酶的直接电子转移   总被引:7,自引:1,他引:6  
蔡称心  陈静 《电化学》2004,10(2):159-167
将血红蛋白(Hb)、辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)分别固定在经碳纳米管修饰的玻碳电极(CNT/GC)上,制成Hb CNT/GC、HRP CNT/GC和GOx CNT/GC电极.Hb、HRP和GOx在CNT/GC电极表面均能发生有效和稳定的直接电子转移反应,其相应的循环伏安曲线均显示出一对几近对称的氧化还原峰;在60mV/s下,其式量电位E0'分别为-0.343V、-0.319V和-0.456V(vs.SCE,pH6.9),且不随扫速而变;以上三者在CNT/GC电极表面直接电子转移的表观速率常数ks依次为1.25±0.25、2.07±0.56和1.74±0.42s-1;根据式量电位E0'随缓冲溶液pH值的变化关系,确知在CNT/GC电极上,Hb或HRP发生的直接电化学遵从(1e+1H+)电极过程机理,而GOx发生的直接电化学反应则遵从(2e+2H+)机理.此外,固定在CNT/GC电极表面的Hb、HRP和GOx也同时表现出对各自底物的生物电催化活性.由本文制备的碳纳米管修饰电极及其固定生物蛋白质(酶)的方法具有简单、易于操作等优点,并可用于对其它生物氧化还原蛋白质和酶的直接电子转移测试.  相似文献   

14.
Traditional colorimetric glucose biosensor generally involves complex assay procedures. Free labile enzymes and peroxidase substrates are used separately for triggering a chromogenic reaction. These limits result in inferior enzyme stability and defective enzymatic catalytic efficiency, making it hard to routinely utilize them for the direct and fast test of glucose. In this work, we provide an all-inclusive substrates/enzymes nanoparticle employed 3,3′5,5′-tetramethylbenzidine (TMB) as chromogenic substrates and glucose oxidase (GOx)/horseradish peroxidase (HRP) as signal amplifier enzymes (TMB-GH NPs) by the molecule self-assembly technique. The “all-inclusive” nanoparticles can realize the tandem colorimetric reactions, and the oxidation product of TMB (ox-TMB) exhibits a strong NIR laser-driven photothermal effect, thus allowing quantitative photothermal detection of glucose. Owing to the restriction of the molecular motion of GOx, HRP, and TMB, the distance of mass transfer between substrates was shortened largely, leading to improved catalytic activity for glucose. Overall, our strategy will simplify the analysis procedure, furthermore, these integrated nanoparticles not only display higher stability and activity than that of the free GOx/HRP system and possesses an excellent performance for colorimetric and photothermal bioassay of glucose simultaneously. We believe that this unique technique will give good inspirations to develop simple and precise methods for bioassay.  相似文献   

15.
In the development of colorimetric biosensors, the use of electrochromic mediators has been accepted and widely used during decades. The main drawback of these types of enzymatic substrates is the difficult recovery of the initial redox state of the molecule, which can be done electrochemically or by antioxidants addition, complicating the initially simple structure of the biosensor. those strategies are rarely followed Actually, being the disposable biosensor configuration the most extended for this detection mechanisms. Alternatively, we propose the first reported use of a diacid dithienylethene 1,2-bis(5-carboxy-2-methylthien-3-yl)cyclopentene (DTE) photoelectrochromic compound as a substrate of the horseradish peroxidase (HRP). The photoisomerization between the open (DTEo) and closed (DTEc) forms of the molecule and the respective shift in the redox potential allowed the light-induced enzymatic detection of glucose in the glucose oxidase [(GOx)]–HRP cascade system. This fast and easy control over the enzymatic substrate availability by light pulses permits a gradually consumption and the light-regeneration of the biosensor for a number of cycles. We consider the presented results transcendent in the development of reusable and light-controlled photonic biosensing systems.  相似文献   

16.
This paper demonstrates that the spectrophotometric properties of blood hemoglobin (Hb) can be used for the direct determination of biochemical compounds in blood. Glucose is used as a model, but the methodology can be applied to many other compounds (only a previous enzymatic reaction producing H(2)O(2) is needed). In order to develop the method, a model relating the Hb absorbance variation during the reaction with the glucose concentration has been developed to provide theoretical support for the method and to predict its application to other compounds. In addition, clear blood samples need to be prepared without pre-treatment and lateral reactions of H(2)O(2) with other blood constituents need to be blocked; this has been achieved with 100 : 1 v/v blood dilution in bi-distilled water and azide addition. The linear response range of the method can be fitted between 2 and 540 mg dL(-1) glucose relative to the original blood sample (RSD about 4%, 70 mg dL(-1)). The analyte concentration can be obtained by an absolute calibration method or by the standard addition method; both have been applied for direct glucose determination in several blood samples and good correlations with those obtained by an automatic analyzer have been obtained.  相似文献   

17.
18.
A micro-flow chemiluminescence (CL) system in vivo for glucose determination by the on-line microdialysis sampling is described in this paper. The micro-flow CL system uses discrete sample droplets, which formed at the tip of the capillary with the sampling volume of 4.5 microl. The sol-gel method is introduced to co-immobilize horseradish peroxidase (HRP) and glucose oxidase (GOD) on the inside surface of the micro-flow cell which was fabricated in polymethyl methacrylate (PMMA). The CL detection involved enzymatic oxidation of glucose to D-gluconic acid and H2O2, then H2O2 oxidizing luminol to produce CL in presence of HRP. The microdialysis probe was utilized for sampling in the rabbit blood; the sample throughput was 20 h(-1). The glucose level in blood of the rabbit was on-line monitored with good results.  相似文献   

19.
近年来,电化学免疫分析法由于成功地将免疫反应的高选择性和电化学测定的高灵敏度相结合而越来越受到人们的重视[1].酶联电化学免疫分析法的测定灵敏度与放射免疫法相近而又不必使用放射性同位素[2],充分显示了该法在临床检验中的优越性和发展前景.本文利用HRP催化TMB-H2O2的反应,以金电极为工作电极,用示差脉冲伏安法检测酶催化产物,建立了TMB-H2O2-HRP酶联免疫示差脉冲伏安分析体系,并成功地用于人血清IgE的测定。实验表明,本法较ELISA显色光度测定法的灵敏度高4倍,且具有更宽的线性范围,样品溶液基体对测定不产…  相似文献   

20.
The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross‐linkers, can be prepared by dual‐enzyme‐triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual‐enzyme‐triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self‐immobilized HRP‐GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号