首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New luminescent materials—aromatic polyketanils (PKs) containing p‐phenylene and biphenylene linkages in the backbone and electron‐donating, side‐group substitutions—were synthesized via melt polycondensation with the goal of studying the interactions between the polymer chains (PKs), primary dopant [1,2‐(di‐2‐ethylhexyl)ester of 4‐sulfophthalic acid (PSA)], and secondary dopant [m‐cresol (MC)] with 1H NMR, 13C NMR, Fourier transform infrared (FTIR), ultraviolet–visible, and photoluminescence measurements. Spectral changes were observed for the PKs after primary and secondary doping, and they supported ionic‐ and hydrogen‐bond formation between the PKs and the PSA and MC, respectively. This specific interaction of the dopant with the host polymer influenced the PK properties, and the following observations were made: (1) HOMO/LUMO energy gap of the protonated PKs; (2) bathochromic/hypsochromic photoluminescence shifts observed after protonation with PSA; (3) a downfield chemical shift of the labile proton in the protonating agent OH group in the 1H NMR spectra of the protonated polymers; (4) a protonation decrease in the intensity of the C?N stretching band in the FTIR spectrum; and (5) a spherulite‐like morphology, detected by atomic force microscopy and polarized optical microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5645–5660, 2006  相似文献   

2.
Functional polynorbornenes (PNBEs) containing pyrrolidine moiety and bis(trifluoromethyl)biphenyl side group were synthesized via ring‐opening metathesis polymerization (ROMP), and the microstructure of polymer chain was characterized by NMR spectroscopy. Poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐pyrrolidine) (PTNP) and poly(N‐phenyl‐norbornene‐pyrrolidine) (PPNP) are supposed to have practically trans double bonds and adopt isotactic syn conformation, whereas poly(N‐3,5‐bis(trifluoromethyl)biphenyl‐norbornene‐dicarboximide) (PTNDI) has both trans and cis double bonds and atactic microstructure. PTNP, PTNDI, and PPNP have much different dielectric constants of 20, 7, and 3, respectively, which is attributed to both the polar 3,5‐bis(trifluoromethyl)biphenyl group and the stereoregular chain structure. The existence of rigid pyrrolidine moiety has a positive contribution to form the tactic polymer chain during ROMP. Polymers are highly thermal stable up to ~300 °C. Having good dielectric properties and thermal stability, these functional PNBEs are expected as the potential dielectric material in thin film capacitors. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Polymer films with enhanced dielectric and breakdown properties are essential for the production of high energy density polymer film capacitors. By capitalizing on the synergistic effects of forced assembly nanolayer coextrusion and biaxial orientation, polymer multilayer films using poly(ethylene terephthalate) (PET) and a poly(vinylidene fluoride‐co‐tetrafluoroethylene) [P(VDF‐TFE)] copolymer were produced. These films exhibited breakdown fields, under a divergent field using needle/plane electrodes, as high as 1000 kV mm?1. The energy densities of these same materials, under a uniform electric field measured using plane/plane electrodes, were as high as 16 J cm?3. The confined morphologies of both PET and P(VDF‐TFE) were correlated to the observed breakdown properties and damage zones. On‐edge P(VDF‐TFE) crystals induced from solid‐state biaxial stretching enhanced the effective P(VDF‐TFE) layer dielectric constant and therefore increased the dielectric contrast between the PET and P(VDF‐TFE) layers. This resulted in additional charge buildup at the layer interface producing larger tree diameters and branches and ultimately increasing the breakdown and energy storage properties. In addition to energy storage and breakdown properties, the hysteresis behavior of these materials was also evaluated. By varying the morphology of the P(VDF‐TFE) layer, the low‐field dielectric loss (or ion migration behavior) could be manipulated, which in turn also changed the observed hysteresis behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 882–896  相似文献   

4.
The synthesis and microwave‐assisted polymerization of a series of chiral 2‐oxazolines with varying alkyl pendant groups, namely R‐2‐ethyl‐4‐ethyl‐2‐oxazoline (R‐EtEtOx), R‐2‐butyl‐4‐ethyl‐2‐oxazoline (R‐BuEtOx), R‐2‐octyl‐4‐ethyl‐2‐oxazoline, 2‐nonyl‐4‐ethyl‐2‐oxazoline, and R‐2‐undecyl‐4‐ethyl‐2‐oxazoline (R‐UndeEtOx), are reported. A kinetic investigation of the polymerization of R‐EtEtOx revealed a living polymerization mechanism. The poly(2‐oxazoline)s containing an ethyl, butyl, and octyl pendant group form similar chiral structures according to circular dichroism measurements. When the pendant group is further elongated, the chiral structure becomes more flexible in trifluoroethanol and the thermal response in hexafluoroisopropanol (HFIP) significantly changes. The short‐range structure of poly‐R‐BuEtOx dissolved in HFIP is thermoresponsive in a complex way, due to HFIP hydrogen bonding to the polymeric amide groups, whereas the long‐range structure determined from small angle neutron scattering is insensitive to temperature demonstrating that only the local secondary structure changes with temperature. In addition, the chiral structure of poly‐R‐UndeEtOx depends on the polarity of the solvent. The short‐range structure becomes more flexible in polar solvents, most likely due to interactions with the amide groups disturbing the secondary structure. In contrast, the long‐range structural transition from an ellipsoid in the apolar n‐hexane to a rod structure in the polar n‐butanol is ascribed to better solvation of the long aliphatic side chains. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Fluorene‐based polymer derivatives are promising materials for organic electronic devices because of their photoluminescence and electroluminescence, good film‐forming ability, and favorable chemical and thermal properties. Although optical properties of polyfluorene have already been reported, most of the studies focused on the linear optical properties, whereas nonlinear optical characteristics have only recently received more detailed attention. Here, we report on two polyfluorene derivatives, poly(9,9′‐n‐dihexyl‐2,7‐fluorenediyl) (LaPPS 10) and poly(9,9′‐n‐dihexyl‐2,7‐fluorene‐diyl‐vinylene) (LaPPS 38), which present intense nonlinear absorption and fluorescence. Two‐photon absorption cross‐section properties of both polymers were characterized in the spectral range from 500 nm up to 900 nm, reaching peak values around 2000 Göppert Mayer units. Optical limiting behavior and two‐photon‐induced fluorescence of both polymers have also been investigated. Furthermore, the first molecular hyperpolarizability of the polymers was also studied using hyper‐Rayleigh scattering. In addition, the three‐photon absorption (3PA) spectra of both materials were also investigated, and 3PA cross‐section values in the order of 1 × 10?78 cm6 s2 photon?2 were observed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 747–754  相似文献   

6.
Poly(4‐methyl‐1‐pentene) (P4MP) was characterized to evaluate its viability as a high‐temperature dielectric film for capacitors. Detailed investigation of thermal, mechanical, rheological, and dielectric properties was carried out to assess its high‐temperature performance and processability. P4MP was melt‐processable below 270 °C without degradation and application temperatures as high as 160–190 °C can be achieved. The dielectric constant and loss of melt‐processed P4MP films was comparable to biaxially oriented polypropylene (BOPP) capacitor films, although the dielectric strength was lower. Enhancements in dielectric strength up to 250–300% were achieved via solution‐processing P4MP films, which could be easily scaled up on a roll‐to‐roll platform to yield isotropic, free‐standing films as thin as 3–5 μm. The influence of crystal structure, crystallinity, and surface morphology of these films on the dielectric properties was examined. The dielectric strength was further increased by 450% through biaxial stretching of solution‐cast films, and a Weibull breakdown field of 514 V/μm was obtained. The dielectric constant was very stable as a function of frequency and temperature and the dielectric loss was restricted to <1–2%. Overall, these results suggest that BOP4MP is a promising candidate to obtain similar energy density as a BOPP capacitor film but at much higher operating temperatures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1497–1515  相似文献   

7.
New low‐temperature curable organic/inorganic hybrid polymers were designed and synthesized as gate dielectrics for organic thin‐film transistors (OTFTs). Allyl alcohols were introduced to polyhedral oligomeric silsesquioxane (POSS) via hydrosilyation to produce an alcohol‐functionalized POSS derivative (POSS‐OH). POSS‐OH was then reacted with hexamethoxymethylmelamine at carrying molar ratios at 80 °C in the presence of a catalytic amount of p‐toluenesulfonic acid to give highly cross‐linked network polymers (POSS‐MM). The prepared thin films were smooth and hard after the thermal cross‐linking reaction and had very low leakage currents (<10?8 A/cm2) with no significant absorption over the visible spectral range. Pentacene‐based OTFTs using the synthesized insulators as gate dielectric layers had higher hole mobilities (up to 0.36 cm2/Vs) than a device using thermally cross‐linked poly(vinyl phenol) and melamine as the gate dielectric layer (0.18 cm2/Vs). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3260–3268  相似文献   

8.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

9.
A novel benzoxazine monomer containing a benzoxazole group was synthesized using a nonsolvent method and then named DAROH‐a. The structure of DAROH‐a was confirmed by FTIR, 1H NMR, elemental analysis, and mass spectrometry. The curing reaction activation energy was calculated at 140 kJ/mol. Its corresponding crosslinked polybenzoxazines, poly(DAROH‐a), displayed a higher glass transition temperature at 402 °C, a 9% weight loss at the said temperature, and a high char yield of 42 wt % (800 °C, in nitrogen). Moreover, the dielectric constants of poly(DAROH‐a) were low and changed only slightly at different temperatures. Furthermore, the dielectric constants and dielectric loss of poly(DAROH‐a) at the same frequency barely changed from room temperature to 150 °C. The photophysical properties of poly(DAROH‐a) film were also investigated. Poly(DAROH‐a) showed an absorption peak at 280 nm. The photoluminescent emission spectrum of poly(DAROH‐a) film displayed predominant emission peaks at 521 nm. It might have potential application as high‐performance materials because of its excellent dielectric constants stability and thermal stability under high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

11.
To obtain novel low‐bandgap materials with tailored hole‐transport properties and extended absorption, electron rich 3,4‐ethylenedioxythiophene is introduced as a comonomer in diketopyrrolo[3,4‐c]pyrrole copolymers with different aryl flanking units. The polymers are characterized by absorption and photoluminescence spectroscopy, dynamic scanning calorimetry, cyclic voltammetry, and X‐ray diffraction. The charge transport properties of these new materials are studied carefully using an organic field effect transistor geometry where the charge carriers are transported over a narrow channel at the semiconductor/dielectric interface. These results are compared to bulk charge carrier mobilities using space‐charge limited current (SCLC) measurements, in which the charge carrier is transported through the complete film thickness of several hundred nanometers. Finally, charge carrier mobilities are correlated with the electronic structure of the compounds. We find that in particular the thiophene‐flanked copolymer PDPP[T]2‐EDOT is a very promising candidate for organic photovoltaics, showing an absorption response in the near infrared region with an optical bandgap of 1.15 eV and a very high bulk hole mobility of 2.9 × 10?4 cm2 V?1 s?1 as measured by SCLC. This value is two orders of magnitudes higher than SCLC mobilities reported for other polydiketopyrrolopyrroles and is in the range of the well‐known hole transporting polymer poly(3‐hexylthiophene). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 639–648  相似文献   

12.
Novel polystyrene derivatives comprising [1‐(3‐isopropenyl‐phenyl)‐1‐methyl‐ethyl]‐carbamate in the side chain were synthesized as photoreactive copolymers. Poly(4‐vinylphenol) was made to react with 1‐(1‐isocyanato‐1‐methyl‐ethyl)‐3‐isopropenyl‐benzene (m‐TMI) and the unreacted hydroxyl groups were protected with acetyl chloride. The copolymers are highly sensitive to the radical photoinitiators that can be activated by irradiation of UV light (λ = 300–365 nm). FTIR spectroscopy was employed to monitor the structural changes in the copolymers exposed to UV irradiation. The dielectric properties of the copolymers were investigated by measuring the capacitance and calculating the permittivity as a function of frequency, along with the IV characteristics. Their properties were compared with those of thermally crosslinkable poly(4‐vinylphenol) blended with poly(melamine‐co‐formaldehyde), which is frequently used as a dielectric layer in organic field‐effect transistors (OFETs). No significant dielectric dispersion was observed in the frequency range of 1 kHz–1 MHz. The dielectric constant was determined to be in the range of 4.2–6.0, which offers a potential for the application of these copolymers to OFET gate insulators. These soluble dielectrics exhibit good film uniformity and can also be patterned using a standard photolithographic technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1710–1718, 2008  相似文献   

13.
Transparent plasticized gels with good mechanical, optical, and dielectric properties have important applications in various fields. We prepared a new gel using a poly(butylene terephthalate)‐co‐poly(alkylene glycol terephthalate) (PBT‐co‐PAGT) copolymer and a plasticizer, dibutyl adipate (DBA). This method improved the polymer crystallinity, and suppressed particle formation in cast‐films when the polymer was dissolved in 1,1,1,3,3,3‐hexafluoro‐2‐propanol, followed by solvent evaporation, and enabled uniform swelling of the polymer network by the plasticizer to form a transparent and flexible gel. The dielectric constants of the developed PBT‐co‐PAGT/DBA gels are much higher than those of PBT‐co‐PAGT films at low frequency. We believe that these PBT‐co‐PAGT/DBA gels could be used as photovoltaic, dielectric, and actuator materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 829–832  相似文献   

14.
Polymer thin films are widely used as coatings and interlevel dielectrics in microelectronic applications. In thin‐film structures, stresses are generated due to interaction with adjacent layers and film shrinkage due to solvent evaporation or curing. This causes polymer chain orientation resulting in anisotropic (direction dependent) film properties. The dual capacitor technique has been developed to measure in situ, the through‐plane (z) stress‐strain behavior of thin polymer films. A parallel plate capacitor device and an interdigitated electrode structure were used as sensors to detect changes in dielectric permittivity and thickness of thin polymer films under compression. The analytical and finite element models used to interpret the capacitance measurements have been presented. The Clausius–Mossotti equation was used to determine the volume change in the film from the permittivity measurements. Results have been reported for 10–14 μm thick, Cyclotene 4026‐46 benzocyclobutene films and 10–12 μm thick films of polyimide PI‐2611. The Cyclotene 4026‐46 films were found to be mechanically isotropic, whereas the PI‐2611 films were highly anisotropic. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1634–1644, 2000  相似文献   

15.
A new methacrylate containing a 2,6‐diacylaminopyridine (DAP) group was synthesized and polymerized via RAFT polymerization to prepare homopolymethacrylates (PDAP) and diblock copolymers combined with a poly(methyl methacrylate) block (PMMA‐b‐PDAP). These polymers can be easily complexed with azobenzene chromophores having thymine (tAZO) or carboxylic groups with a dendritic structure (dAZO), which can form either three or two hydrogen bonds with the DAP groups, respectively. The supramolecular polymers were characterized by spectroscopic techniques, optical microscopy, TGA, and DSC. The supramolecular polymers and block copolymers with dAZO exhibited mesomorphic properties meanwhile with tAZO are amorphous materials. The response of the supramolecular polymers to irradiation with linearly polarized light was also investigated founding that stable optical anisotropy can be photoinduced in all the materials although higher values of birefringence and dichroism were obtained in polymers containing the dendrimeric chromophore dAZO. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3173–3184  相似文献   

16.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Upon photolysis or heating, aryl cyclic sulfonium (ACS) zwitterions polymerize by ring‐opening and loss of charge to yield nonionic polymers. These water‐soluble monomers potentially are useful for photolithography because they can be cast from and developed in water. The ACS zwitterion from bisphenol A, 1,1′‐[isopropylidenebis(6‐hydroxy‐3,1‐phenylene)] bis (tetrahydrothiophenium hydroxide) bis(inner salt) (1) is a negative‐tone, photosensitive material that after photolysis yields a crosslinked film. Unexposed regions are removed by water. The cured film has a low dielectric constant, high volume resistivity, a high degree of planarization, low residual stress, thermogravimetric stability, acceptable fracture toughness, and high hardness. These are desirable properties for a dielectric material used in microelectronic applications. However, a shortcoming of the material is its low Tg, at about 140 °C. A second ACS zwitterion, 1,1′‐[fluorenylidenebis(6‐hydroxy‐3,1‐phenylene)] bis(tetrahydrothiophenium hydroxide) bis(inner salt) (2) was prepared that yields a crosslinked polymer with a higher Tg of about 190 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1283–1290, 2000  相似文献   

18.
The backbone of poly(butylene terephthalate) (PBT) was modified with 2,4:3,5‐di‐O‐methylene‐D ‐glucitol (Glux) using solid‐state modification (SSM). The obtained copolyesters proved to have a non‐random overall chemical microstructure. The thermal properties of these semicrystalline, block‐like, Glux‐based materials were extraordinary, showing higher melting points, and glass transition temperatures compared with other sugar‐based copolyesters prepared by SSM. These remarkable thermal properties were a direct result of the inherently rigid structure of Glux and the relatively slow randomization of the block‐like chemical microstructure of the Glux‐based copolyesters in the melt. SSM proved to be a versatile tool for preparing partially biobased copolyesters with superior thermal properties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 164–177  相似文献   

19.
Polylactide (PLA)‐grafted dextran was synthesized with a trimethylsilyl protection method to produce novel biodegradable, biomedical materials. PLA‐grafted dextrans with various lengths and numbers of graft chains were synthesized. The properties of solution‐cast films prepared from PLA‐grafted dextrans were investigated with thermal and dynamic mechanical analyses. The graft‐copolymer films exhibited lower glass‐transition temperatures, melting temperatures (Tm's), and crystallinities as well as higher viscosity properties as compared with poly‐L ‐lactide film. The Tm and crystallinity and mechanical properties at 37 °C could be adjusted by controlling the molecular structure such as the lengths and numbers of graft chains. Furthermore, the biodegradability of PLA‐grafted dextran films was investigated through the weight change of film and the molecular weight change of polymer during the in vitro degradation test. PLA‐grafted dextrans exhibited different degradation behavior from poly‐L ‐lactide with the introduction of a polysaccharide segment and branched structure as well as the change of end‐functional group. The degradation rate of PLA‐grafted dextran and the cast film prepared from PLA‐grafted dextran could be adjusted by controlling the sugar content or the length of graft chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2462–2468, 2003  相似文献   

20.
In order to develop new electronic devices, it is necessary to find innovative solutions to the eco‐sustainability problem of materials as substrates for circuits. We realized a photoresponsive device consisting of a semiconducting polymer film deposited onto optically semitransparent and conductive biodegradable poly(3‐hydroxybutyrate) (PHB)/carbon nanotube (CNT) substrates. The experiments indicated that the PHB‐CNT bionanocomposite substrate behaves as an optical window trapping electric charges produced by the photoexcitation of the semiconducting polymer. Such PHB‐CNT functional substrates are expected to be attractive for eco‐friendly electronics. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 596–602  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号