首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerization of 1‐hexene under high pressures (100–750 MPa) was investigated with nickel–α‐diimine complex/methylaluminoxane and palladium–α‐diimine complex/methylaluminoxane as catalyst systems. The catalytic activity of both the nickel and palladium complexes monotonously increased as pressure rose and became two to four times higher than that observed at atmospheric pressure. Palladium catalysts gave poly(1‐hexene)s with higher molecular weights under high pressure, whereas nickel‐catalyzed high‐pressure polymerizations gave polymers with higher molecular weights only at rather low monomer concentrations. The living‐like character in the palladium‐catalyzed polymerizations was somewhat enhanced under higher pressures, whereas the nickel‐catalyzed polymerizations under high pressures were not living. More branches were found in the polymers produced by nickel catalysts at higher pressures. The chain‐transfer reaction seemed to be accelerated by the high pressure in the nickel‐catalyzed reactions, although this was not apparent in the palladium‐catalyzed reactions. Dimers formed and were accompanied by high molecular weight polymers when nickel catalysts were used under high pressures and at high monomer concentrations. The possibility that very congested five‐coordinated species act as key intermediates for the dimerization is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 293–302, 2003  相似文献   

2.
A series of novel α‐diamine nickel complexes, (ArNH‐C(Me)‐(Me)C‐NHAr)NiBr2, 1 : Ar=2,6‐diisopropylphenyl, 2 : Ar=2,6‐dimethylphenyl, 3 : Ar=phenyl), have been synthesized and characterized. X‐ray crystallographic analysis showed that the coordination geometry of the α‐diamine nickel complexes is markedly different from conventional α‐diimine nickel complexes, and that the chelate ring (N‐C‐C‐N‐Ni) of the α‐diamine nickel complex is significantly distorted. The α‐diamine nickel catalysts also display different steric effects on ethylene polymerization in comparison to the α‐diimine nickel catalyst. Increasing the steric hindrance of the α‐diamine ligand by substitution of the o‐methyl groups with o‐isopropyl groups leads to decreased polymerization activity and molecular weight; however, catalyst thermal stability is significantly enhanced. Living polymerizations of ethylene can be successfully achieved using 1 /Et2AlCl at 35 °C or 2 /Et2AlCl at 0 °C. The bulky α‐diamine nickel catalyst 1 with isopropyl substituents can additionally be used to control the branching topology of the obtained polyethylene at the same level of branching density by tuning the reaction temperature and ethylene pressure.  相似文献   

3.
A dibenzobarrelene‐bridged, α‐diimine NiII catalyst (rac‐ 3 ) was synthesized and shown to have exceptional behavior for the polymerization of ethylene. The catalyst afforded high molecular weight polyethylenes with narrow dispersities and degrees of branching much lower than those made by related α‐diimine nickel catalysts. Catalyst rac‐ 3 demonstrated living behavior at room temperature, produced linear polyethylene (Tm=135 °C) at −20 °C, and, most importantly, was able to copolymerize ethylene with the biorenewable polar monomer methyl 10‐undecenoate to yield highly linear ester‐functionalized polyethylene.  相似文献   

4.
The copolymerization of ethylene with cyclopentene catalyzed by three α‐diimine nickel(II) complexes in the presence of methylaluminoxane (MAO) was investigated. High‐molecular‐weight branched ethylene/cyclopentene copolymers with only cis‐1,3‐enchained cyclopentene units, which has not been reported previously, were obtained. The catalytic activity, cyclopentene incorporation, copolymer molecular weight, and molecular‐weight distribution could be controlled over a wide range through the variation of the catalyst structure and polymerization conditions, including cyclopentene concentration in the feed and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2186–2192, 2008  相似文献   

5.
A dibenzobarrelene‐bridged, α‐diimine NiII catalyst (rac‐ 3 ) was synthesized and shown to have exceptional behavior for the polymerization of ethylene. The catalyst afforded high molecular weight polyethylenes with narrow dispersities and degrees of branching much lower than those made by related α‐diimine nickel catalysts. Catalyst rac‐ 3 demonstrated living behavior at room temperature, produced linear polyethylene (Tm=135 °C) at ?20 °C, and, most importantly, was able to copolymerize ethylene with the biorenewable polar monomer methyl 10‐undecenoate to yield highly linear ester‐functionalized polyethylene.  相似文献   

6.
The α‐diimine‐ligated Fe‐complex, BIAN‐Fe(C6H6) , was synthesized and evaluated for the polymerization of l ‐lactide. Characterization of BIAN‐Fe(C6H6) reveals that it is redox non‐innocent and suggests that it is an Fe(I) species bearing a radical‐anionic ligand. We will demonstrate that BIAN‐Fe(C6H6) is active for the ring‐opening polymerization of l lactide, and that polymer is produced with, or without, the use of an added external initiator. Interestingly, very high molecular weight polymers are produced in the absence of external initiator whereas polymer molecular weights that agree with theoretical calculations are produced in the presence of external initiator. To the best of our knowledge, BIAN‐Fe(C6H6) is the first Fe‐based α‐diimine catalyst reported to be active for the polymerization of l lactide. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2824–2830  相似文献   

7.
Transition‐metal‐catalyzed copolymerization reactions of olefins with polar‐functionalized comonomers are highly important and also highly challenging. A second‐coordination‐sphere strategy was developed to address some of the difficulties encountered in these copolymerization reactions. A series of α‐diimine ligands bearing nitrogen‐containing second coordination spheres were prepared and characterized. The properties of the corresponding nickel and palladium catalysts in ethylene polymerizations and copolymerizations were investigated. In the nickel system, significant reduction in polymer branching density was observed, while lower polymer branching densities, as well as a wider range of polar monomer substrates, were achieved in the palladium system. Control experiments and computational results reveal the critical role of the metal−nitrogen interaction in these polymerization and copolymerization reactions.  相似文献   

8.
Four α‐diimine nickel complexes [(Ar? N?C(R)? C(R)?N? Ar)NiBr2; R?H, CH3, cyclohexane‐1,2‐diyl, naphthalene‐1,8‐diyl, Ar?2,6‐i‐Pr2‐C6H3‐) were investigated in propene and hex‐1‐ene polymerization to identify the limits of backbone substituent R size needed to provide living/controlled α‐olefins polymerization by the sufficient suppression of βH elimination transfer. Propagation kinetics measurements, molar mass on monomer conversion dependencies and reinitiation tests were used to evaluate the livingness of hex‐1‐ene polymerization. Interestingly, living/controlled hex‐1‐ene polymerization was observed in the case of all diimine derivatives including the one bearing only hydrogen atom in backbone positions. Unexpectedly, in the case of catalysts bearing H and CH3 backbone substituents, we observed the unusual isomerization of hex‐1‐ene into internal hexenes in parallel with its polymerization. Nevertheless, by subtracting the amount of monomer consumed in isomerization side reaction, polymerization still keeps the features of living/controlled process. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3193–3202  相似文献   

9.
A series of α‐keto‐β‐diimine nickel complexes (Ar‐N = C(CH3)‐C(O)‐C(CH3)=N‐Ar)NiBr2; Ar = 2,6‐R‐C6H3‐, R = Me, Et, iPr, and Ar = 2,4,6‐Me3‐C6H3‐) was prepared. All corresponding ligands are unstable even under an inert atmosphere and in a freezer. Stable copper complex intermediates of ligand synthesis and ethyl substituted nickel complex were isolated and characterized by X‐ray. All nickel complexes were used for the polymerization of ethene, propylene, and hex‐1‐ene to investigate their livingness and the extent of chain‐walking. Low‐temperature propene polymerization with less bulky ortho‐substituents was less isospecific than the one with isopropyl derivative. Propene stereoblock copolymers were prepared by iPr derivative combining the polymerization at low temperature to prepare isotactic polypropylene (PP) block and at a higher temperature, supporting chain‐walking, to obtain amorphous regioirregular PP block. Alternatively, a copolymerization of propene with ethene was used for the preparation of amorphous block. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2440–2449  相似文献   

10.
A systematic study of the influence of the α‐olefin size, the catalyst stereospecificity and the reaction temperature was done on the catalytic activity and tacticity of poly‐α‐olefins from 1‐hexene to 1‐octadecene. The metallocenes used were rac‐Et[Ind2]ZrCl2 ( 1 ) and Me2C[Cp(9‐Flu)]ZrCl2 ( 2 ) to obtain isotactic and syndiotactic polyolefins. Some catalysts giving atactic polymers were also used in order to study all the possible 13C NMR pentades. Catalytic activities increased and isotacticity and syndiotacticity decreased with temperature, but no real trend was found with the α‐olefin size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4744–4753, 2005  相似文献   

11.
Long‐chain‐branched polyethylene with a broad or bimodal molecular weight distribution was synthesized by ethylene homopolymerization via a novel nickel(II) α‐diimine complex of 2,3‐bis(2‐phenylphenyl)butane diimine nickel dibromide ({[2‐C6H4(C6H5)]? N?C? (CH3)C(CH3)?N? [2‐C6H4(C6H5)]}NiBr2) that possessed two stereoisomers in the presence of modified methylaluminoxane. The influences of the polymerization conditions, including the temperature and Al/Ni molar ratio, on the catalytic activity, molecular weight and molecular weight distribution, degree of branching, and branch length of polyethylene, were investigated. The resultant products were confirmed by gel permeation chromatography, gas chromatography/mass spectrometry, and 13C NMR characterization to be composed of higher molecular weight polyethylene with only isolated long‐branched chains (longer than six carbons) or with methyl pendant groups and oligomers of linear α‐olefins. The long‐chain‐branched polyethylene was formed mainly through the copolymerization of ethylene growing chains and macromonomers of α‐olefins. The presence of methyl pendant groups in the polyethylene main chain implied a 2,1‐insertion of the macromonomers into [Ni]? H active species. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1325–1330, 2005  相似文献   

12.
A series of highly active ethylene polymerization catalysts based on bidendate α‐diimine ligands coordinated to nickel are reported. The ligands are prepared via the condensation of bulky ortho‐substituted anilines bearing remote push–pull substituents with acenaphthenequinone, and the precatalysts are prepared via coordination of these ligands to (DME)NiBr2 (DME = 1,2‐dimethoxyethane) to form complexes having general formula [ZN = C(An)‐C(An) = NZ]NiBr2 [Z = (4‐NH2‐3,5‐C6H2R2)2CH(4‐C6H4Y); An, acenaphthene quinone; R, Me, Et, iPr; Y = H, NO2, OCH3]. When activated with methylaluminoxane (MAO) or common alkyl aluminiums such as ethyl aluminium sesquichloride (EAS) all catalysts polymerize ethylene with activities exceeding 107 g‐PE/ mol‐Ni h atm at 30 °C and atmospheric pressure. Among the cocatalysts used EAS records the best activity. Effects of remote substituents on ethylene polymerization activity are also investigated. The change in potential of metal center induced by remote substituents, as evidenced by cyclic voltammetric measurements, influences the polymerization activity. UV–visible spectroscopic data have specified the important role of cocatalyst in the stabilization of nickel‐based active species. A tentative interpretation based on the formation of active and dormant species has been discussed. The resulting polyethylene was characterized by high molecular weight and relatively broad molecular weight distribution, and their microstructure varied with the structure of catalyst and cocatalyst. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1066–1082, 2008  相似文献   

13.
In general, the complexation and gelation behavior between biocompatible poly(ε‐caprolactone) (PCL) derivatives and α‐cyclodextrin (α‐CD) is extensively studied in water, but not in organic solvents. In this article, the complexation and gelation behavior between α‐CD and multi‐arm polymer β‐cyclodextrin‐PCL (β‐CD‐PCL) with a unique “jellyfish‐like” structure are thoroughly investigated in organic solvent N,N‐dimethylformamide and a new heat‐induced organogel is obtained. However, PCL linear polymers cannot form organogels under the same condition. The complexation is characterized by rheological measurements, DSC, XRD, and SEM. The SEM images reveal that the complexes between β‐CD‐PCL and α‐CD present a novel topological helix porous structure which is distinctly different from the lamellar structure formed by PCL linear polymers and α‐CD, suggesting the unique “jellyfish‐like” structure of β‐CD‐PCL is crucial for the formation of the organogels. This research may provide insight into constructing new supramolecular organogels and potential for designing new functional biomaterials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1598–1606  相似文献   

14.
1‐Hexene polymerizations catalyzed by α‐diimine nickel complexes after activation with modified methylaluminoxane were performed at various reaction temperatures. Effects of catalyst structure and polymerization temperature on activity and polymer microstructure were evaluated in detail. Bulky catalyst 1b with camphyl backbone exhibited good control ability and greatly enhanced thermal stability to be capable of polymerizing 1‐hexene at 80°C. The poly(1‐hexene)s with long methylene sequences and dominate branches (methyl and butyl) were synthesized using catalyst 1b . Differential scanning calorimetry analysis further confirmed that long polymethylene block (? (CH2)n? , n > 20) was formed in the poly(1‐hexene)s with melting point of 64°C obtained by catalyst 1b on the basis of initial branched model polyethylene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
A new series of palladium complexes ( Pd1–Pd5 ) ligated by symmetrical 2,3‐diiminobutane derivatives, 2,3‐bis[2,6‐bis{bis(4‐FC6H4)2CH}2‐4‐(alkyl)C6H2N]C4H6 (alkyl = Me L1 , Et L2 , i Pr L3 , t Bu L4 ) and 2,3‐bis[2,6‐bis{bis(C6H5)2CH}2‐4‐{(CH3)3C}C6H2N]C4H6 L5 , have been prepared and well characterized, and their catalytic scope toward ethylene polymerization have been investigated. Upon activation with MAO, all palladium complexes ( Pd1–Pd5) exhibited good activities (up to 1.44 × 106 g (PE) mol?1(Pd) h?1) and produced higher molecular weight polyethylene in the range of 105 g mol?1 with precise molecular weight distribution (M w/M n = 1.37–1.77). One of the long‐standing limiting features of the Brookhart type α‐diimine Pd(II) catalysts is that they produce highly branched (ca. 100/1000 C atoms) and totally amorphous polymer. Conversely, herein Pd5 produced polymers having dramatically lower branching number (28/1000) as well as improved melting temperature up to 73.1 °C showing well‐controlled linear architecture, and very similar to polyethylene materials generated by early‐transition‐metal based catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3214–3222  相似文献   

16.
We have demonstrated a direct arylation polycondensation of 3,4‐ethylenedioxythiophene with 2,7‐dibromo‐9,9‐dioctylfluorene using palladium on carbon (Pd/C) as a catalyst. Pd/C is a low‐cost solid‐supported palladium catalyst, giving one of the effective catalytic systems for direct arylation. The Pd/C‐catalyzed direct arylation polycondensation with acetic acid/potassium carbonate in N,N‐dimethylacetamide furnished a high molecular weight π‐conjugated alternating copolymer of EDOT‐fluorene (Mn = 89,300, Mw/Mn = 3.27) in high yield. The polycondensation of EDOT with various dibromoarenes was also achieved, giving EDOT‐carbazole, EDOT‐dialylamine, and EDOT‐bithiophene polymers. Optical and electrochemical properties of the polymers were also discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1183–1188  相似文献   

17.
Anionic polymerizations of acrylates possessing 1‐pyrenyl (Py1), 1‐naphthyl (Np1), 2‐naphthyl (Np2), and 2‐fluorenyl (Fl2) groups as α‐substituents were investigated as well as the properties of the obtained polymers. Py1 and Np1 did not undergo polymerization, whereas Np2 and Fl2, annulated α‐phenylacrylates at 3,4‐position of the phenyl group, afforded homo‐oligomers and alternating copolymers with methyl methacrylate (MMA). The oligomer of Fl2 [oligo(Fl2)] exhibited strong excimer emission in diluted solution. In contrast, dominant monomer emission was observed for the alternating copolymer with MMA [poly(Fl2‐co‐MMA)]. In the alternating copolymer, MMA units could function as spacers preventing the association of pendant fluorene moieties to suppress the excimer formation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2806–2814  相似文献   

18.
A nickel α‐diimine catalyst was used for Grignard metathesis (GRIM) polymerization of 2,5‐dibromo 3‐hexylthiophene and 2‐bromo‐5‐iodo‐3‐hexylthiophene monomers. GRIM polymerization of 2‐bromo‐5‐iodo‐3‐hexylthiophene generated regioregular polymers with molecular weights ranging from 3 000 to 12 000 g · mol−1. The nickel α‐diimine catalyst was also successfully used for the GRIM polymerization of a bulky benzodithiophene monomer.

  相似文献   


19.
The first α‐diimine nickel(I) complex having a chloro bridge is reported. The centrosymmetric dinuclear structure of {[ArN?C(Me)C(Me)?NAr]NiCl}2[Ar?2,6?C6H3(i‐Pr)2] features two chelating α‐diimine ligands and two bridged chlorine atoms, so that a distorted tetrahedral N2Cl2 coordination geometry for nickel results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Monocyclopendienyltitanium trichloride (CpTiCl3) was supported on polymer carriers with different hydroxyl contents, and the supported catalysts were used for styrene polymerization. The supported catalysts exhibited high activity even at low Al/Ti ratios and increased the molecular weight of the products, indicating that polymer carriers could stabilize the active sites. The polymers prepared with unsupported and supported catalysts were extracted with boiling n‐butanone and characterized by carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry. The polymers obtained by supported catalysts had a high fraction of boiling n‐butanone‐insoluble part and high melting temperatures, but 13C NMR results showed that syndiotacticity decreased compared with that of polymers prepared with an unsupported catalyst. ESR study on the supported catalysts confirmed that the active sites supported on the carrier dropped into the solution and formed active sites the same as those in the unsupported system when they reacted with methylaluminoxane. 13C NMR analysis showed that the polymerization mechanism of the supported active sites was an active‐site controlled mechanism instead of a chain‐end controlled mechanism of the unsupported active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 127–135, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号