首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New [2.2]paracyclophane‐based through‐space conjugated polymers containing fluorescence quenchers such as anthraquinone and ferrocene units at the polymer termini were designed and synthesized. Their optical properties were investigated in detail. Fluorescence emission from the stacked π‐electron systems was effectively quenched by the stacked π‐electron systems at the polymer termini due to the energy and electron transfer through a single polymer chain; thus, the polymers acted as the molecular wire. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
New aromatic ring‐layered polymers consisting of carbazole as a layered aromatic group and xanthene as a scaffold were designed and synthesized via the Sonogashira–Hagihara coupling reaction. Their optical and electrochemical behaviors were investigated in detail; the results showed that these polymers could be used as hole‐transporting materials. Polymers with nitrobenzene moieties at the polymer chain ends quenched the emission from the layered carbazoles to the nitrobenzene termini; thus, the polymers acted as the molecular wire that transferred photoexcited energy and/or electrons to the polymer termini. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4279–4288, 2009  相似文献   

3.
The eight‐membered cyclic monomer, prepared by Diels–Alder reaction of 1,5‐cyclooctadiene and anthracene, polymerized via Ru‐catalyzed ring‐opening metathesis to efficiently afford high polymers (Mn up to 631,000). Unsaturated moieties in the main chain of the obtained polymer were hydrogenated with a homogeneous ruthenium catalyst in quantitative conversion, confirmed by 1H‐NMR measurement. The self‐standing membranes were provided by casting the tetrahydrofuran solutions of both nonhydrogenated and hydrogenated polymers. The obtained membranes showed high transparency in the region of >300 nm with mechanical flexibility. Thermal gravimetric analysis revealed that both nonhydrogenated and hydrogenated polymers decomposed in two stages. The first‐stage decomposition starting at around 230 °C was caused by retro Diels–Alder reaction forming anthracene, proven by pyrolysis gas chromatography mass spectroscopy (GC‐MS) analyses. Mechanical grinding of the polymers induced the formation of anthracene in solid state, which transformed the polymer into blue‐luminescent materials under UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1392–1400  相似文献   

4.
A facile synthetic strategy for preparing hydroxylated polymethacrylate amphiphilic block copolymers (PCzMMA‐b‐PBMMA, PFlMMA‐b‐PBMMA) incorporated with primary and secondary hydroxyl groups and electroactive moieties along the polymer backbone is reported. Full characterization, structure‐property relationship and self‐assembly of these polymers are discussed. Due to interplay of hydrophobic/hydrophilic interactions, PCzMMA‐b‐PBMMA formed a layered lattice and PFlMMA‐b‐PBMMA showed a vesicular morphology. Electropolymerization of the electroactive units led to the formation of cross‐conjugated polymer network in solution and in thin films. The network structure was characterized with a range of spectroscopic techniques. Such highly processable polymers may be of interest to applications in which a conducting amphiphilic films with strong adhesion to various substrates are required. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2217–2227  相似文献   

5.
A number of alternating copolymers containing anthryl and aryl units in the polymer chain have been prepared by Friedel-Crafts arylation of the anthracene (polymer type B) or by condensation of 9,10-bis(chloromethyl) anthracene with opportune aromatic substrates (polymer type A). Polymers of type A were all found to contain 9,10-disubstituted anthracene units, but polymers of type B were found to contain 1,4-disubstituted anthracene units. Structure of the polymers were established through their NMR and ultraviolet spectra, and through analogy with appropriate model compounds. It has been found that the inclusion of anthracene units in the polymer chain yields higher melting and more soluble materials with respect to polybenzyls containing only aryl units. Anthracene units introduce, also, some interesting fluorescence characteristics in the polymers, which show intense emission at about 440 mμ.  相似文献   

6.
A simple and facile strategy for the functionalization of commercial poly(ε‐caprolactone) diols (PCLs) with pendant functionalities at the polymer chain termini is described. Well‐defined allyl‐functionalized PCLs with varying numbers of allyl end‐block side‐groups were synthesized by cationic ring‐opening polymerization of allyl glycidyl ether using PCL diols as macroinitiators. Further functionalization of the allyl‐functionalized PCLs was realized via the UV‐initiated radical addition of a furan‐functionalized thiol to the pendant allyl functional groups, showing the suitability for post‐modification of the PCL materials. Changes in polymer structure as a result of varying the number of pendant functional units at the PCL chain termini were demonstrated. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 928–939  相似文献   

7.
Two types of amphiphilic polymers composed of azobenzene repeat units in the main chain connected either via ethynylene (acetylene) or butadiynylene (diacetylene) linkages and carrying oligo(ethylene glycol) side chains were reported. Synthesis was accomplished by polycondensation involving Sonogashira–Hagihara cross coupling and Glaser coupling, respectively. Solvent titration experiments revealed that both polymers fold into stable helices in a polar environment. While the ethynylene-bridged polymer resembled the behavior of its oligomeric counterparts, introduction of the extended diacetylene unit strengthened π,π-stacking interactions in case of the butadiynylene-bridged polymer leading to a pronounced aggregation tendency and suppressing photoisomerization in the folded state. Our study demonstrates the importance of backbone connectivity to balance intra- and intermolecular forces for the successful design of photoresponsive polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 313–318  相似文献   

8.
Reactivity of isothiocynate moieties in the side chain of polymethacrylate with amine, alcohol, or thiol was investigated, and the reactions were applied to preparation of networked polymers. Isothiocyanate of polymer side chain rapidly reacted with amines without a catalyst, to give the corresponding thioureas. However, it did not react with alcohols or thiols under the same conditions. Using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst, addition of alcohols or thiols to the isothiocyanate proceeded smoothly. Addition of amines, alcohols, and thiols to isothiocyanates moiety contained in the side chain of polymethacrylate also proceeded readily with or without the catalyst, respectively, to effectively give the corresponding side chain modified polymers. Occurrence of these additions was confirmed by 1H NMR and IR measurements. Glass transition temperatures and thermal decomposition temperatures of the obtained polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. Networked polymers were easily prepared by addition of 1,6‐hexamethylenediamine or hexamethylene glycol to the polymethacrylate having isothiocyanato groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1832–1842  相似文献   

9.
New rigid–flexible polyethers containing bis(biphenyl)anthracene or bis(styryl)anthracene units in the main chain were synthesized and characterized by viscosimetry, thermal and mechanical analysis, NMR, UV-vis, and luminescence spectroscopy. The polyethers containing bis(styryl)anthracene units in the main chain form free-standing films either from solution casting or after melt pressing at temperatures where they are thermally stable. The length of the flexible spacer influences the thermal and mechanical behavior of these polymers. The isotropization temperature as well as the glass transition temperature show an odd–even effect depending on the spacer segment length. Films with high modulus at room temperature and glass transition temperatures in the range 74–103°C were obtained using dynamic mechanical analysis. These polymers show bright-yellow photoluminescence with maximum at 580 nm in solution. In the solid state, the luminescence maximum is either red or blue shifted depending on the number of the methylene units in the aliphatic segment. The polyethers containing bis(biphenyl)anthracene units in the main chain are blue-light-emitting polymers with photoluminescence maxima at 435 and 455 nm in solution. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3826–3837, 1999  相似文献   

10.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

11.
A series of photocrosslinkable polymers bearing hyperpolarizable side chain chromophores was synthesized, poled and evaluated on the basis of the thermal stability of Second Harmonic Generation (SHG). Photoinitiation allowed for control of the onset of curing. Crosslinking was monitored by infrared spectroscopy and optimal conversion was achieved by applying a slow temperature ramp during exposure. The ultimate stability of the poled polymers was directly related to the number of crosslinking substituents that were attached to the chromophore pendant group. With two reactive groups per chromophore significant SHG was retained at temperatures above the initial polymer glass transition temperature. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2769–2775  相似文献   

12.
A series of poly(arylene ether ether nitrile)s with different chain lengths of the alkylsulfonates (SPAEEN‐x: x refers number of the methylene units) are successfully synthesized for fuel cell applications. The polymers produced flexible and transparent membranes by solvent casting. The resulting membranes display a high thermal stability, oxidative stability, and higher proton conductivity than that of Nafion 117 at 80 °C and 95% relative humidity (RH). Furthermore, the SPAEEN‐12 with the longest alkylsulfonated side chain exhibits a higher proton conductivity at 30% RH than that of SPAEEN‐6 despite the lower IEC value, which indicates that the introduction of longer alkylsufonated side chains to the polymer main chain induces an efficient proton conduction by the formation of a well‐developed phase‐separated morphology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 21–29  相似文献   

13.
Multiblock copolymers containing periodically spaced side‐chain carboxyl groups were obtained by a two‐step synthesis involving the preparation of ABA triblock prepolymers of ε‐caprolactone (A blocks) and ethylene glycol (B block) followed by chain extension to ABAn multiblock copolymers by reaction with pyromellitic dianhydride (PMDA). NMR analysis demonstrated the incorporation of PMDA in polymer chain and revealed the possibility of PMDA units to exist in two isomers, cisoid and transoid forms. Chain extension resulted in the incorporation of free carboxylic groups in polymer backbone and in an almost twofold increase of molecular weight. Thermal analysis indicated that the presence of PMDA residues interferes with the formation of crystalline phases by the chain‐extended polymers. The polymers were found to slowly degrade in buffer solution at 37 °C. Further, the carboxylated polymers can be processed into nanoparticulates by nanoprecipitation. Depending on the selected organic solvent, the particulate was constituted by either a monodispersed nanoparticles with average size of 150 nm or a bimodal distribution centered at about 100 nm and 7 μm. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3800–3809  相似文献   

14.
Dimethyl 2,6‐anthracene dicarboxylate is used as a comonomer in the synthesis of functional copolymers that are subject to modification with Diels–Alder reactions. The formation of poly(ethylene terephthalate‐co‐2,6‐anthracenate), containing less than 20 mol % of the anthracene‐2,6‐dicarboxylate structural units, provides materials that are tractable and soluble. The anthracene units of the copolymers undergo Diels–Alder reactions with N‐substituted maleimides. The grafting of N‐alkylmaleimides affords soluble, hydrophobic polymers, whereas grafting with maleimide‐terminated poly(ethylene glycol) affords hydrophilic polymers. Because this reaction proceeds below the melting point of the copolymers, the procedure can be applied to thin films, whereby the surface properties are modified. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3256–3263, 2002  相似文献   

15.
A series of two‐dimensional donor–acceptor–donor (D1–A(D2)) type of conducting polymers (CPs) all with electroactive bulky side chain structure has been designed, synthesized, and investigated by introducing the donor–acceptor (D1–A) thiophene–quinoxaline moiety in the main chain alongside and additional donor and hole transporting units in the side chain. All the UV‐vis spectra of the 2D polymers, PTPQT, PFPQT, and PCPQT, each with triphenylamine, fluorene, and carbazole units as the D2 side chain, possess strong intramolecular charge transfer absorption, thus resulting in better light harvesting. Their optical and electronic properties were thoroughly explored experimentally and computationally. The effect of molecular weight of the narrow polydispersity polymers on their optoelectronic property was studied in detail. In summary, the 2‐D CPs show potential for use as an active material in optoelectronic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1217–1227  相似文献   

16.
Copolymerization of the cyclic ketene acetal 5,6‐benzo‐2‐methylene‐1,3‐dioxepane (BMDO) with methyl methacrylate (MMA) is studied with respect to its copolymerization parameters and the suitability to control BMDO/MMA copolymerizations via the reversible addition‐fragmentation chain transfer (RAFT) technique to obtain linear and 4‐arm star polymers. BMDO shows disparate copolymerization behavior with MMA and r1 = 0.33 ± 0.06 and r2 = 6.0 ± 0.8 have been determined for polymerization at 110 °C in anisole from fitting copolymer composition vs. comonomer feed data to the Lewis–Mayo equation. Copolymerization of the two monomers is successful in RAFT polymerization employing a trithiocarbonate control agent. As desired, polymers contain only little amount of polyester units stemming from BMDO units and preliminary degradation experiment show that the polymer degrades slowly, but steadily in aqueous 1 M NaOH dispersion. Within ten days, the polymers are broken down to low molecular weight segments from an initial molecular weight of Mn = 6000 g mol?1. Star (co)polymerization with an erythritol‐based tetra‐functional RAFT agent following the Z‐group approach proceeds efficiently and polymers with a number‐average molecular weight of 10,000 g mol?1 are readily obtained that degrade in similar manner as the linear copolymer counterparts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1633–1641  相似文献   

17.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

18.
Conjugated polymers containing phenyl‐, pyridyl‐, and thiazolyl‐flanked diketopyrrolopyrrole (DPP) were synthesized by direct arylation polycondensation of 3,4‐ethylenedioxythiophene derivatives and dibrominated DPP‐based monomers, in order to probe the effects of the aromatic groups in the DPP units on the absorption property, energy level, and crystallinity. A polymer possessing thiazolyl‐flanked DPP units was found to display long‐wavelength absorption properties and higher crystallinity than the polymers bearing phenyl‐ and pyridyl‐flanked DPP units. These features of the thiazolyl‐based polymer were afforded by its coplanar structure of the main chain. The synthesized polymers showed semiconducting properties in organic field effect transistors and organic photovoltaics. Direct arylation polycondensation is an efficient synthetic method that affords a series of DPP‐based polymers in a simple fashion and, thus, helping in a comprehensive understanding on the relationship between the aromatic groups in DPP units and their physical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2337–2345  相似文献   

19.
Selective polymer wrapping is a promising approach to obtain high‐chiral‐purity single‐walled carbon nanotubes (SWCNTs) needed in technical applications and scientific studies. We showed that among three fluorene‐based polymers with different side‐chain lengths and backbones, poly[(9,9‐dihexylfluorenyl‐2,7‐diyl)‐co‐(9,10‐anthracene)] (PFH‐A) can selectively extract SWCNTs synthesized from the CoSO4/SiO2 catalyst, which results in enrichment of 78.3 % (9,8) and 12.2 % (9,7) nanotubes among all semiconducting species. These high‐chiral‐purity SWCNTs may find potential applications in electronics, optoelectronics, and photovoltaics. Furthermore, molecular dynamics simulations suggest that the extraction selectivity of PFH‐A relates to the bending and alignment of its alkyl chains and the twisting of its two aromatic backbone units (biphenyl and anthracene) relative to SWCNTs. The strong π–π interaction between polymers and SWCNTs would increase the extraction yield, but it is not beneficial for chiral selectivity. Our findings suggest that the matching between the curvature of SWCNTs and the flexibility of the polymer side chains and the aromatic backbone units is essential in designing novel polymers for selective extraction of (n,m) species.  相似文献   

20.
This article describes the construction of branched ROMP‐polymer architectures via polycondensation of ABn‐type macromonomers. For this convergent strategy, a polymer was synthesized that carries several hydroxyl‐groups along the polymer chain and one carboxylic acid group at the chain end. An esterification reaction between these functional groups yielded long‐chain branched polymers. The polymers were analyzed by NMR and SEC to monitor the condensation reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号