首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The synthesis of a three-dimensional, six-connecting, organic building block based on a robust, rigid, and open-shell polychlorotriphenylmethyl (PTM) unit (radical 1) is reported, and its self-assembly properties are described in detail. The tendencies of this highly polar molecule and its hydrogenated precursor, compound 4, to form hydrogen bonds with oxygenated solvents ([1THF(6)] and [4THF(6)]) were reduced by replacing THF with diethyl ether in the crystallization process to yield two-dimensional (2D) hydrogen-bonded structures ([1(Et(2)O)(3)] and [4(Et(2)O)(3)]). The presence of direct hydrogen bonds between the radicals in the latter phase of 1 gives rise to very weak ferromagnetic intermolecular interactions at low temperatures, whereas when the radicals are isolated by THF molecules these interactions are antiferromagnetic and very weak. The role played by the carboxylic groups not only in the self-assembly properties but also in the transmission of the magnetic interactions has been illustrated by determination of the crystal structure and measurement of the magnetic properties of the corresponding hexaester radical 6, in which the close packing of molecular units gives rise to weak antiferromagnetic intermolecular interactions. Attempts to avoid solvation of the molecules in the solid state and to increase the structural and magnetic dimensionality were pursued by recrystallization of both compounds 1 and 4 from concentrated nitric acid, affording two three-dimensional (3D) robust hydrogen-bonded structures. While the structure obtained with compound 4 is characterized by the presence of polar channels and boxes containing water guest molecules along the c axis, radical 1 was oxidized to the corresponding fuchsone 10, which presented a completely different close-packed, guest-free structure.  相似文献   

2.
Herein, we present a Ca‐based metal–organic framework named AEPF‐1, which is an active and selective catalyst in olefin hydrogenation reactions. AEPF‐1 exhibits a phase transition upon desorption of guest molecules. This structural transformation takes place by a crystal to crystal transformation accompanied by the loss of single‐crystal integrity. Powder diffraction methods and computational studies were applied to determine the structure of the guest‐free phase. This work also presents data on the exceptional adsorption behavior of this material, which is shown to be capable of separating polar from nonpolar organic solvents, and is a good candidate for selective solvent adsorption under mild conditions.  相似文献   

3.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

4.
几种极性有机晶体的生长习性与形成机理   总被引:4,自引:0,他引:4  
有机晶体特别是极性有机晶体, 在不同的溶剂中具有明显不同的生长习性。本文通过对4-氨基-4'-硝基二苯硫醚(ANDS)等几种典型极性有机晶体在不同溶剂中的生长习性和结晶形貌的讨论, 提出了偶极生长基元叠合模型, 从两个方面探讨了这些习性的形成机理, 即(1)有机晶体在不同的溶剂中具有不同结构和形式的生长基元(对于极性有机晶体而言, 这些生长基元都具有偶极子特征), 而不同的生长基元往晶体的各个面族上叠合的相对速率不同, 从而导致了晶体习性的改变; (2)晶体生长界面的性质不同, 特别是对于极性晶体, 晶体界面的极性不同;不同的溶剂与生长晶体的界面相互作用不同, 即使同种溶剂对晶体不同界面上的作用也不同, 因而改变了生长界面的性质,影响了生长基元在晶体界面, 特别是晶体正、负极面上的叠合速率, 从而导致了晶体形貌的变化。由此比较合理地解释了晶体所呈现的不同的生长习性, 特别是合理地解释了极性有机晶体所呈现的极性生长特征。  相似文献   

5.
In contrast to classic methods carried out under inert atmospheres with dry volatile organic solvents and often low temperatures, the addition of highly polar organometallic compounds to non‐activated imines and nitriles proceeds quickly, efficiently, and chemoselectively with a broad range of substrates at room temperature and under air with water as the only reaction medium. Secondary amines and tertiary carbinamines are furnished in yields of up to and over 99 %. The significant solvent D/H isotope effect observed for the on‐water nucleophilic additions of organolithium compounds to imines suggests that the on‐water catalysis arises from proton transfer across the organic–water interface. The strong intermolecular hydrogen bonds between water molecules may play a key role in disfavoring protonolysis, which occurs extensively in other protic media such as methanol. This work lays the foundation for reshaping many fundamental s‐block metal‐mediated organic transformations in water.  相似文献   

6.
The complexation of chiral guests in the cavity of dimeric self‐assembled chiral capsule 1 2 was studied by using NMR spectroscopy and X‐ray crystallography. Capsule 1 2 has walls composed of amino acid backbones forming numerous directional binding sites that are arranged in a chiral manner. The polar character of the interior dictates the encapsulation preferences towards hydrophilic guests and the ability of the capsule to extract guests from water into an organic phase. Chiral discrimination towards hydroxy acids was evaluated by using association constants and competition experiments, and moderate de values were observed (up to 59 %). Complexes with one or two guest molecules in the cavity were formed. For 1:1 complexes, solvent molecules are coencapsulated; this influences guest dynamics and makes the chiral recognition solvent dependent. Reversal of the preferences can be induced by coencapsulation of a nonchiral solvent in the chiral internal environment. For complexes with two guests, filling of the capsule’s internal space can be very effective and packing coefficients of up to 70 % can be reached. The X‐ray crystal structure of complex 1 2?((S) ‐6 )2 with well‐resolved guest molecules reveals a recognition motif that is based on an extensive system of hydrogen bonds. The optimal arrangement of interactions with the alternating positively and negatively charged groups of the capsule’s walls is fulfilled by the guest carboxylic groups acting simultaneously as hydrogen‐bond donors and acceptors. An additional guest molecule interacting externally with the capsule reveals a possible entrance mechanism involving a polar gate. In solution, the structural features and dynamic behavior of the D4‐symmetric homochiral capsule were analyzed by variable‐temperature NMR spectroscopy and the results were compared with those for the S8‐symmetric heterochiral capsule.  相似文献   

7.
The conductor-like screening model (COSMO) was used to investigate the solvent influence on electronic g-values of organic radicals. The previously studied diphenyl nitric oxide and di-tert-butyl nitric oxide radicals were taken as test cases. The calculations employed spin-unrestricted density functional theory and the BP and B3LYP density functionals. The g-tensors were calculated as mixed second derivative properties with respect to the external magnetic field and the electron magnetic moment. The first-order response of the Kohn-Sham orbitals with respect to the external magnetic field was determined through the coupled-perturbed DFT approach. The spin-orbit coupling operator was treated using an accurate multicenter spin-orbit mean-field (SOMF) approach. Provided that important hydrogen bonds are explicitly modeled by a supermolecule approach and that the basis set is sufficiently saturated, the COSMO calculations lead to accurate predictions of isotropic g-shifts with deviations of not more than 100 ppm relative to experiment. Very accurate results were obtained by employing a recently developed self-consistent modification of the COSMO method to real solvents (COSMO-RS), which we briefly introduce in this paper as direct COSMO-RS (D-COSMO-RS). This model gives isotropic g-shifts of similar high accuracy for water without using the supermolecule approach. This is an important result because it solves many of the problems associated with the supermolecule approach such as local minima and the choice of a suitable model system. Thus, the self-consistent D-COSMO-RS incorporates some specific solvation effects into continuum models, in particular it appears to successfully model the effects of hydrogen bonding. Although not yet widely validated, this opens a novel approach for the calculation of properties which so far only could be calculated by the inclusion of explicit solvent molecules in continuum solvation methods.  相似文献   

8.
The crystal structure of two complexes of the isomerscis-syn-cis (isomer A) andcis-anti-cis (isomer B) of dicyclohexano-18-crown-6 with 4-methylbenzenesulfamide have been determined by X-ray single crystal diffraction methods. The two structures have been solved by direct methods and refined to agreement values of 0.067 and 0.038 for isomers A and B respectively. The first isomer forms an inclusion compound with a host/guest ratio of 1 : I; the second one of I:2. The amino groups of the guest molecules are connected by N-H...O hydrogen bonds with oxygen atoms of the polyether molecules. The methyl groups of 4-methylbenzenesulfamide do not form hydrogen bonds.[/p]The host-guest interactions in the molecular complexes, the reciprocal influence of the two molecules on their conformation and the intermolecular contacts between the molecules in the crystal are discussed.  相似文献   

9.
Koner AL  Pischel U  Nau WM 《Organic letters》2007,9(15):2899-2902
Kinetic solvent effects on hydrogen abstractions, namely, acceleration in nonpolar solvents, have been presumed to be restricted to O-H hydrogen donors. We demonstrate that also abstractions from C-H and even Sn-H bonds by cumyloxyl radicals and n,pi*-excited 2,3-diazabicyclo[2.2.2]oct-2-ene are fastest in the gas phase and nonpolar solvents but slowest in acetonitrile. Accordingly, solvent effects on hydrogen abstractions are more general, presumably due to stabilization of the reactive oxygen or nitrogen species in polar solvents.  相似文献   

10.
Single-crystal-to-single-crystal (SCSC) transformations represent some of the most fascinating phenomena in chemistry. They are not only intriguing from a basic science point of view but also provide a means to modify or tune the properties of the materials via the postsynthetic introduction of suitable guest molecules or organic functional groups into their structures. Here, we describe UCY-2, a new flexible Nd(3+) metal-organic framework (MOF), which exhibits a unique capability to undergo a plethora of SCSC transformations with some of them being very uncommon. These structural alterations involve the replacement of coordinating solvent molecules of UCY-2 by terminally ligating solvents and organic ligands with multiple functional groups including -OH, -SH, -NH-, and -NH(2) or their combinations, chelating ligands, anions, and two different organic compounds. The SCSC coordinating solvent exchange is thus demonstrated as a powerful method for the functionalization of MOFs.  相似文献   

11.
Abstract

The inclusion properties of the first helical tubuland diol hosts 1–5 have been surveyed and are reported. Bicyclic diol 1 forms helical tubulate inclusion compounds with most small solvent molecules, but with certain phenols hydrogen bonded co-crystalline materials are produced instead. Diol 2 yields helical tubulates with larger guest molecules, but if smaller solvents are used then an alternative host system is obtained. This has the guests trapped in ellipsoidal cavities located along constricted canals and is termed the ellipsoidal clathrate type. In some cases both inclusion types can be produced from 2 by varying the experimental conditions. The free volume present in the helical tubuland lattices of 3 and 5 is insufficient for guest inclusion. Diol 4 has the largest void space and can form inclusion compounds with large molecules such as ferrocene and squalene. X-ray crystal structures of representative examples of these compounds are discussed.  相似文献   

12.
Abstract

A series of new ‘inclusion’ materials based on tetra-4-methoxyphenyl, tetra-4-hydroxyphenyl and tetra-4-chlorophenyl derivatives of the metalloporphyrin system, in combination with a wide variety of guest molecules and ligands, have been prepared, and their structural systematics analysed. Crystallographic investigations have confirmed that the supramolecular arrangement of the hydroxyphenylporphyrin species is dominated by interporphyrin directional hydrogen-bonding interactions, and consists of continuous networks of strongly coordinated entities with varying degrees of cross-linking and rigidity. Guest molecules can be absorbed in these solids in distinctly defined sites of the lattice: in the small interhost cages of fixed size between adjacent intercoordinated porphyrin hosts, or in extended one-dimensional channels formed between the hydrogen bonded host arrays running parallel or perpendicular to the porphyrin plane. For polar ligands with strong nucleophiles, their potential coordination to the metal center provides an additional recognition factor. The stacking mode (offset geometry or overlapping) of the host metalloporphyrin arrays is also affected by the nature of the incorporated guest/ligand. Materials based on the chloro-substituted porphyrins were found to form similarly networked structural modes, influenced by the molecular shape as well as by halogen-halogen noncovalent interactions. Formation of a polar tubular intermolecular architecture capable of aligning organic dipolar guest molecule in the crystal bulk has also been demonstrated. The methoxy-substituted materials form clathrate-type structures characterized by dense layered arrangement of the porphyrin building blocks in two-dimensions. The various structural features directing the observed modes of the supramolecular architecture, and affecting the host structure as well as the guest mobility in it, are discussed.  相似文献   

13.
We have used well‐established computational methods to generate and explore the crystal structure landscapes of four organic molecules of well‐known inclusion behaviour. Using these methods, we are able to generate both close‐packed crystal structures and high‐energy open frameworks containing voids of molecular dimensions. Some of these high‐energy open frameworks correspond to real structures observed experimentally when the appropriate guest molecules are present during crystallisation. We propose a combination of crystal structure prediction methodologies with structure rankings based on relative lattice energy and solvent‐accessible volume as a way of selecting likely inclusion frameworks completely ab initio. This methodology can be used as part of a rational strategy in the design of inclusion compounds, and also for the anticipation of inclusion behaviour in organic molecules.  相似文献   

14.
Crystallisation of trithiocyanuric acid (TTCA) from various organic solvents that have hydrogen bonding capability (acetone, 2-butanone, dimethylformamide, dimethyl sulfoxide, methanol and acetonitrile) leads to the formation of co-crystals in which the solvent molecules are incorporated together with TTCA in the crystal structure. Structure determination by single-crystal X-ray diffraction reveals that these co-crystals can be classified into different groups depending upon the topological arrangement of the TTCA molecules in the crystal structure. Thus, three different types of single-tape arrangements of TTCA molecules and one type of double-tape arrangement of TTCA molecules are identified. In all co-crystals, hydrogen-bonding interactions are formed through the involvement of N-H bonds of TTCA molecules in these tapes and the other molecule in the co-crystal. Detailed rationalisation of the structural properties of these co-crystals is presented.  相似文献   

15.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

16.
The rate of Diels–Alder reaction of diene 9,10‐bis(hydroxymethyl)anthracene with dienophile N‐ethylmaleimide was studied in a series of solvents with different polarity and hydrogen‐bonding ability. Enthalpies and entropies of activation were determined from the temperature dependences of the rate constants. Rate acceleration in nonaqueous protic solvents such as glycerol, propylene, and ethylene glycols was observed. In addition, enthalpy versus entropy of activation plots show a compensation pattern different from the other considered solvents, which can be linked with the solvophobic effects observed in polyhydric alcohols. However, the solvophobic acceleration was not as strong as the hydrophobic acceleration in water. Hydrogen bonding of the reactants and transition state with solvent also influences the reaction rate. The studied reaction is slightly promoted in hydrocarbon solvents in comparison with aprotic polar solvents. This was explained by hydrogen bonding of the hydroxyl groups of diene with dienophile in transition state, which requires prior breaking of the hydrogen bonds of these groups with polar solvent molecules.  相似文献   

17.
Two solvates of title compound 1-acetyl-3-naphthyl-5-(9-anthryl)-2-pyrazoline solvate(ANNP) (1a) with chloroform (1b) and acetic acid (1c) and a single crystal of another title compound 1-acetyl-3-(4-chloro)phenyl-5-(9-anthryl)-2-pyrazoline (ACAP) (2a) and its adduct with phenol (2b) were afforded via solution growth technique. The structure of these solids were confirmed and verified by multiple techniques such as single crystal X-ray diffraction (SCXRD) analysis, PXRD, DSC/TGA and Infrared spectroscopy. Structural analysis indicates that guest inclusion results not only in stronger hydrogen bonds, but also in a larger number of favourable C–H?π interactions between ANNP/ACAP molecules. The solvates show symmetry reduction guest effect comparing with the guest free molecules of ANNP and ACAP. Moreover, characteristic changes have been observed in the Infrared bands of the solvates owing to the formation of hydrogen bonds between host–guest.  相似文献   

18.
Tanaka K  Hayashi S  Caira MR 《Organic letters》2008,10(11):2119-2122
Some novel tetra- and hexasalicylide derivatives were synthesized. The tetrasalicylides having a 5-substituted halogen atom on the aromatic ring form organogels with several kinds of organic solvents, whereas the parent compound does not. In contrast, hexasalicylides form stable inclusion crystals with several organic guest molecules.  相似文献   

19.
This paper is concerned with studies of weak intermolecular interactions in molecular inclusion type systems involving uncharged host and guest entities. Three new complexes of synthetic organic ligands with water and methylene chloride have been characterized by single-crystal X-ray diffraction. The hosts are composed of three cyclic urea units whose carbonyl groups are held in convergent positions by bonding their attached nitrogens to one another through two (noncyclic ligand) or three (macrocyclic ligand) rigid spacer units. Conformational organization is further enforced by an aliphatic bridge between two of the phenylene spacers in the macrocyclic hosts and an additional dimerization of the open-chain ligand. The host species were found to be particularly suitable to interact with proton donating H2O and CH2Cl2 guest moieties, as their molecular surface contains appropriately sized polar cavities lined with the carbonyl functions. Association between the interacting components in these complexes is stabilized by O–HO and C–HO hydrogen bonds. In the corresponding crystal structures additional molecules of the solvent are located between units of the complex. The significance of preorganization of the host structure to an efficient guest binding is emphasized by an observation that no stable complexes of a similar but unbridged macrocyclic ligand could be crystallized from the same solvent. The structural features of the inclusion compounds are described in detail, and the host-guest interaction scheme is compared to that observed in complexes of 18-crown-6 with neutral guests. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82039 (98 pages)  相似文献   

20.
Recently, we have reported a metal-macrocycle framework (MMF) with five enantiomerically paired molecular binding pockets that exhibit site-selective guest arrangement on the nano-channel surface in soaking experiments using a variety of guest molecules. The guest inclusion is based largely on molecular exchange between solvent molecules such as CH3CN and guest molecules on the surface. Herein, we report that the molecular arrangement on the nano-channel surface varies with size, shape and/or chemical properties of functional groups of guests, mono-substituted benzene derivatives, such as benzonitrile, acetophenone and nitrobenzene. In their inclusion complexes, polar nitrile, acetyl and nitro groups serve as molecular anchors to a macrocyclic cavity through hydrogen bonding. Notably, benzonitrile and benzenesulphonic acid bind only to one pair of enantiomeric binding pockets. Such a highly site-selective binding would enable further multi-component surface modifications in the MMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号