首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Two jet methods for saturating the fluid boundary layer with microbubbles for drag reduction in contrust with gas injection through porous materials are considered. The first method is the gas injection through the slot under a special fluid wall jet. The second method is the saturation of boundary layer by microbubbles via the gas-water mixture injection through the slot. Experimental data, reflecting the skin friction drag reduction on the flat plate and total drag reduction of axisymmetric bodies, are presented. The comparison between a jet methods of gas injection and gas injection through porous materials is made.Nomenclature v free-stream velocity - v j mean velocity of a water through slot - v g mean velocity of a gas through slot - h width of slot for realizing water jet - h 1 width of slot for gas injection - incidence angle - Q volume airflow rate - C Q airflow rate coefficient (v g/v ) - C f skin friction coefficient - v j/v - C f0 C f ifQ=0 andv j=0 - f C f/C f 0 - d diameter of an axisymmetric body - L length of body - C Q 4 · ·Q/d 2 v - C D 4 ·D/1/2v 2 ·d 2 - C Q 4 ·Q/d 2 v - Q j volume flow rate of water jet - C 8 ·Q jvj/d 2 v 2 - 1 fluid density of main flow - 2 fluid density of wall jet - B 1 main stream total pressure - B 2 wall jet total pressure - v 1 main stream velocity - Be (B 2B 1)/1/21 v 1 2 = Bernoulli number - 2 v 2/1 v 1 - p st static pressure - p at atmospheric pressure - p st/p at - D hydrodynamic drag of body  相似文献   

2.
Calculations of the flow of the mixture 0.94 CO2+0.05 N2+0.01 Ar past the forward portion of segmentai bodies are presented. The temperature, pressure, and concentration distributions are given as a function of the pressure ahead of the shock wave and the body velocity. Analysis of the concentration distribution makes it possible to formulate a simplified model for the chemical reaction kinetics in the shock layer that reflects the primary flow characteristics. The density distributions are used to verify the validity of the binary similarity law throughout the shock layer region calculated.The flow of a CO2+N2+Ar gas mixture of varying composition past a spherical nose was examined in [1]. The basic flow properties in the shock layer were studied, particularly flow dependence on the free-stream CO2 and N2 concentration.New revised data on the properties of the Venusian atmosphere have appeared in the literature [2, 3] One is the dominant CO2 concentration. This finding permits more rigorous formulation of the problem of blunt body motion in the Venus atmosphere, and attention can be concentrated on revising the CO2 thermodynamic and kinetic properties that must be used in the calculation.The problem of supersonic nonequilibrium flow past a blunt body is solved within the framework of the problem formulation of [4].Notation V body velocity - shock wave standoff - universal gas constant - ratio of frozen specific heats - hRt/m enthalpy per unit mass undisturbed stream P pressure - density - T temperature - m molecular weight - cp specific heat at constant pressure - (X) concentration of component X (number of particles in unit mass) - R body radius of curvature at the stagnation point - j rate of j-th chemical reaction shock layer P V 2 pressure - density - TT temperature - mm molecular weight Translated from Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, Vol. 5, No. 2, pp. 67–72, March–April, 1970.The author thanks V. P. Stulov for guidance in this study.  相似文献   

3.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

4.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

5.
The results of investigations of inviscid flow over inverted cones with nose consisting of a spherical segment were published for the first time in Soviet literature in [1–4]. In the present paper, a numerical solution to this problem is obtained using the improved algorithms of [5, 6], which have proved themselves well in problems of exterior flow over surfaces with positive angles of inclination to the oncoming flow. It is shown that the Mach number 2 M , equilibrium and nonequilibrium physicochemical transformations in air (H = 60 km, V = 7.4 km/sec, R0 = 1 m), and the angle of attack 0 40° influence the investigated pressure distributions. A comparison of the results of the calculations with drainage experiments for M = 6, = 0-25° confirms the extended region of applicability of the developed numerical methods. Also proposed is a simple correlation of the dependence on the Mach number in the range 1.5 M of the shape of the shock wave near a sphere in a stream of ideal gas with adiabatic exponent = 1.4.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 178–183, January–February, 1981.  相似文献   

6.
Various aspects of the problem of intense blowing through the surface of bodies have, been theoretically studied by a number of authors, within the framework of inviscid flow theory. A detailed bibliography on this topic is given, e.g., in [1, 2]. The well-known approaches to solution of this problem have a limited area of application. For example, asymptotic methods can be used for hypersonic flow regimes only at relatively low levels of the blown gas momentum ( = 2 = ovo 2/ V 2 1). The same limitation applies to the numerical method of straight lines [2]. The forward Eulerian calculation schemes [3, 4] smear the contact discontinuity severely, and cannot handle the case where the blown gas and the gas in the incident flow have different thermodynamic properties (o ). This paper presents results of a numerical investigation of supersonic flow over two-dimensional and axisymmetric bodies with intense blowing on the forward surface, performed using a time-dependent finite-difference method [5] with an explicit definition of the contact interface between the two cases. The calculations encompass a family of elliptic cylinders with semiaxis ratio 0.5 4, a flat-face cylinder, and a flat plate with rounding near the midsection, with variations in the blowing law, the incident flow Mach number M (3 M 10), the adiabatic indices, and the blowing parameter 0 0.5.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–124, January–February, 1977.In conclusion, the authors thank T. S. Novikov and I. D. Sandomirskii, who took part In the present calculations.  相似文献   

7.
This paper conducts a numerical investigation of viscous nonequilibrium flow over a spherically blunted cone of hypersonic carbon dioxide (ReS = 10–105), where ReS = VL/S. From the results obtained for the distribution of gas-dynamic and thermochemical parameters in the shock layer the basic flow laws are elucidated and estimates are made of the boundaries for existence of various flow regimes within the framework of continuum theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 102–105, July–August, 1978.  相似文献   

8.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

9.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

10.
We prove the existence and uniqueness of entropy solutions of the Neumann problem for the quasilinear parabolic equation uta(u, Du), where a(z,)=f(z,), and f is a convex function of with linear growth as ||||, satisfying other additional assumptions. In particular, this class includes the case where f(z,)=(z)(), >0, and is a convex function with linear growth as ||||.  相似文献   

11.
The numerical method of calculating the supersonic three-dimensional flow about blunt bodies with detached shock wave presented in [1–3] is applied to the case of unsteady flow. The formulation of the unsteady problem is analogous to that of [4], which assumes smallness of the unsteady disturbances.The paper presents some results of a study of the unsteady flow about blunt bodies over a wide range of variation of the Mach number M=1.50– and dimensionless oscillation frequency l/V=0–1.0. A comparison is made with the results obtained from the Newton theory.  相似文献   

12.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

13.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

14.
The problem of heat conduction in a thin rotating disk with heat input at a fixed point is considered. The disk is cooled by forced convection from its lateral surfaces. By defining a complex temperature, the temperature throughout the disk is presented as a series of Bessel functions of complex argument. Results are given for a range of rotational speeds.Nomenclature R radial coordinate - angular coordinate - a radius of disk - b thickness of disk - T temperature - T ambient temperature - rotational speed of disk - q heat flux into disk - k thermal conductivity of disk - density of disk - c specific heat of disk - h coefficient of convective heat transfer - r dimensionless radial coordinate, R/a - T* characteristic temperature, q 0 a/ k - t dimensionless temperature, (T–T )/T* - C 1, C 2 dimensionless parameters defined in (3)  相似文献   

15.
This paper presents the technique for and results from numerical calculations of the hypersonic laminar boundary layer on blunted cones with account for the vorticity of the external flow caused by the curved bow shock wave. It is assumed that the air in the boundary layer is in the equilibrium dissociated state, but the Prandtl number is assumed constant, =0.72. The calculations were made in the range of velocities 3–8 km/sec, cone half-angles k=0°–20°. With account for the vortical interaction of the boundary layer with the external flow, the distribution of the thermal flux and friction will depend on the freestream Reynolds number (other conditions being the same). In the calculations the Reynolds number R, calculated from the freestream parameters and the radius of the spherical blunting, varies from 2.5·103 to 5.104. For the smaller Reynolds numbers the boundary layer thickness on the blunting becomes comparable with the shock standoff, and for R<2.5·103 it is apparent that we must reconsider the calculation scheme. With R>5·104 for cones which are not very long the vortical interaction becomes relatively unimportant. The results of the calculations are processed in accordance with the similarity criteria for hypersonic viscous gas flow past slender blunted cones [1, 2].  相似文献   

16.
In this paper we study differential equations of the formx(t) + x(t)=f(x(t)), x(0)=x 0 C HereC is a closed, bounded convex subset of a Banach spaceX,f(C) C, and it is often assumed thatf(x) is a quadratic map. We study the differential equation by using the general theory of nonexpansive maps and nonexpansive, non-linear semigroups, and we obtain sharp results in a number of cases of interest. We give a formula for the Lipschitz constant off: C C, and we derive a precise explicit formula for the Lipschitz constant whenf is quadratic,C is the unit simplex inR n, and thel 1 norm is used. We give a new proof of a theorem about nonexpansive semigroups; and we show that if the Lipschitz constant off: CC is less than or equal to one, then limtf(x(t))–x(t)=0 and, if {x(t):t 0} is precompact, then limtx(t) exists. Iff¦C=L¦C, whereL is a bounded linear operator, we apply the nonlinear theory to prove that (under mild further conditions on C) limt f(x(t))–x(t)=0 and that limt x(t) exists if {x(t):t 0} is precompact. However, forn 3 we give examples of quadratic mapsf of the unit simplex ofR n into itself such that limt x(t) fails to exist for mostx 0 C andx(t) may be periodic. Our theorems answer several questions recently raised by J. Herod in connection with so-called model Boltzmann equations.  相似文献   

17.
A one-equation low-Reynolds number turbulence model has been applied successfully to the flow and heat transfer over a circular cylinder in turbulent cross flow. The turbulence length-scale was found to be equal 3.7y up to a distance 0.05 and then constant equal to 0.185 up to the edge of the boundary layer (wherey is the distance from the surface and is the boundary layer thickness).The model predictions for heat transfer coefficient, skin friction factor, velocity and kinetic energy profiles were in good agreement with the data. The model was applied for Re 250,000 and Tu0.07.Nomenclature µ,C D Constants in the turbulence kinetic energy equation - C 1,C 2 Constants in the turbulence length-scale equation - Skin friction coefficient atx - D Cylinder diameter - F Dimensionless flow streamwise velocityu/u e - k Turbulence kinetic energy =1/2 the sum of the squared three fluctuating velocities - K Dimensionless turbulence kinetic energyk/u e /2 - I Dimensionless temperature (T–T w )/(T T w ) - l Turbulence length-scale - l e Turbulence length-scale at outer region - Nu D Nusselt number - p Pressure - Pr Prandtl number - Pr t Turbulent Prandtl number - Pr k Constant in the turbulence kinetic energy equation - R Cylinder radius - Re D Reynolds number u D - Re x Reynolds number u x - R K Reynolds number of turbulence - T Mean temperature - T Mean temperature at ambient - T s Mean temperature at surface - Tu Cross flow turbulence intensity, - u Mean flow streamwise velocity - u Fluctuating streamwise velocity - u e Mean flow velocity at far field distance - u Mean flow velocity at ambient - u* Friction velocity - v Mean velocity normal to surface - V Dimensionless mean velocity normal to surface - x,x 1 Distance along the surface - y Distance normal to surface - Dimensionless pressure gradient parameter - Boundary layer thickness atu=0.9995u e - Transformed coordinate iny direction - Fluid molecular viscosity - t Turbulent viscosity - eff + t - µ Fluid molecular viscosity at ambient - Kinematic viscosity/ - Density - Density at ambient - w Wall shear stress - w,0 Wall shear stress at zero free stream turbulence  相似文献   

18.
We investigate the problem of electrical charging of bodies as a result of charged-particle extraction by a hydrodynamic flow. The analysis is performed in view of the application to the problem of motion electrification of aircraft caused by a stream of charged particles into the surrounding space. We formulate the appropriate system of nonstationary electrohydrodynamic equations. It is shown that in many applications the charging of electrically insulated bodies consists of two successive intermediate processes. The first process is the formation of charge Q on the body in time T1 The second process consists of a change of the body potential (with a constant charge Q) as a consequence of the stream of charged particles into the outside space noted above. At the end of the second process (with duration T2) the body potential is at . We also investigate the problem of charging a spherical source of neutral and charged particles. Using the analytical solution we find the quantities Q and and the characteristic times T1 and T2. It is shown that the time T2 can exceed T1 by several orders of magnitude. We formulate the problems of nonstationary electric fields during the extraction of several types of particles.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 94–103, September–October, 1977.  相似文献   

19.
Vakakis  A. F.  Azeez  M. F. A. 《Nonlinear dynamics》1998,15(3):245-257
We present an iterative technique to analytically approximate the homoclinic loops of the Lorenz system for = 10, b = 8/3 and = H = 13.926.... First, the local structure of the homoclinic solution for t 0 ± and t ± is analyzed. Then, global approximants are used to match the local expansions. The matching procedure resembles the one used in Padé approximations. The accuracy of the approximation is improved iteratively, with each iteration providing estimates for the initial conditions of the homoclinic orbit, the value of H, and three undetermined constants in the local expansions. Within three iterations the error in H falls to the order of 0.1%. Comparisons with numerical integrations are made, and a discussion on ways to extend the technique to other types of homoclinic or heteroclinic orbits, and to improve its accuracy, is given.  相似文献   

20.
This article discusses plane and axisymmetric flows of a nonviscous ideal gas around bodies of stepped form, forming with a Mach number M= and an adiabatic indexN1. The greatest amount of attention is paid to the case where there is no Newtonian free layer, but the shock layer is detached at great distances from the nose of the body.Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 4, pp. 104–112, July–August, 1973.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号