首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the influence of diffusion on the scaling properties of the first order structure function, S1, of a two-dimensional chaotically advected passive scalar with finite lifetime, i.e., with a decaying term in its evolution equation. We obtain an analytical expression for S1 where the dependence on the diffusivity, the decaying coefficient and the stirring due to the chaotic flow is explicitly stated. We show that the presence of diffusion introduces a crossover length-scale, the diffusion scale (Ld), such that the scaling behaviour for the structure function is analytical for length-scales shorter than Ld, and shows a scaling exponent that depends on the decaying term and the mixing of the flow for larger scales. Therefore, the scaling exponents for scales larger than Ld are not modified with respect to those calculated in the zero diffusion limit. Moreover, Ld turns out to be independent of the decaying coefficient, being its value the same as for the passive scalar with infinite lifetime. Numerical results support our theoretical findings. Our analytical and numerical calculations rest upon the Feynmann-Kac representation of the advection-reaction-diffusion partial differential equation. Received 18 March 2002 Published online 31 July 2002  相似文献   

2.
We investigate the dynamics of spinodal dewetting in liquid-liquid polymer systems. Dewetting of poly(methyl-methacrylate) (PMMA) thin films on polystyrene (PS) “substrates” is followed in situ using neutron reflectivity. By following the development of roughness at the PS/PMMA interface and the PMMA surface we extract characteristic growth times for the dewetting process. These characteristic growth times are measured as a function of the molecular weight of the two polymers. By also carrying out experiments in the regime where the dynamics are independent of the PS molecular weight, we are able to use dewetting to probe the scaling of the PMMA thin film viscosity with temperature and molecular weight. We find that this scaling reflects bulk behaviour. However, absolute values are low compared to bulk viscosities, which we suggest may be due in part to slippage at the polymer/polymer interface. Received 25 June 2001 and Received in final form 5 December 2001  相似文献   

3.
Large increases of mobility of local segmental relaxation observed in polymer films as the film thickness is decreased, as evidenced by decreases of the glass temperature, are not found for relaxation mechanisms that have longer length scales including the Rouse relaxation modes and the diffusion of entire polymer chains. We show that the coupling model predictions, when extended to consider polymer thin films, are consistent with a large increase of the mobility of the local segmental motions and the lack of such a change for the Rouse modes and the diffusion of entire polymer chains. There are two effects that can reduce the coupling parameter of the local segmental relaxation in thin films. One is the chain orientation that is induced parallel to the surface when the film thickness h becomes smaller than the end-to-end distance of the chains and the other is a finite-size effect when h is no longer large compared to the cooperative length scale. Extremely thin ( ≈ 1.5 nm) films obtained by intercalating a polymer into layered silicates have thickness significantly less than the cooperative length scale near the bulk polymer glass transition temperature. As a result, the coupling parameter of the local segmental relaxation in such thin films is reduced almost to zero. With this plausible assumption, we show the coupling model can explain quantitatively the large decrease of the local segmental relaxation time found experimentally. Received 1 August 2001 and Received in final form 1 December 2001  相似文献   

4.
We consider general d-dimensional random surfaces that are characterized by power-law power spectra defined in both infinite and finite spectral regions. The first type of surfaces belongs to the class of ideal fractals, whereas the second possess both the smallest and the largest scales and physically is more realistic. For both types we calculate the structure functions (SF) exactly; in addition for the second type we obtain the SF's asymptotic expansions. On this basis we show that the surfaces are (in statistical sense) self-affine and approximately self-affine, respectively. Depending on the value of the spectral exponent, we find imbalance between the finite size effects which results in systematic discrepancy in the scaling properties between the two types of surfaces. Explicit expressions for the topothesy, and in the case of second type of surfaces for the large correlation length and cross-over distances are also derived. Received 3 October 2001 / Received in final form 5 March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: oyordanov@aubg.bg  相似文献   

5.
We study the force-induced unfolding of random disordered RNA or single-stranded DNA polymers. The system undergoes a second-order phase transition from a collapsed globular phase at low forces to an extensive necklace phase with a macroscopic end-to-end distance at high forces. At low temperatures, the sequence inhomogeneities modify the critical behaviour. We provide numerical evidence for the universality of the critical exponents which, by extrapolation of the scaling laws to zero force, contain useful information on the ground-state (f = 0) properties. This provides a good method for quantitative studies of scaling exponents characterizing the collapsed globule. In order to get rid of the blurring effect of thermal fluctuations, we restrict ourselves to the ground state at fixed external force. We analyze the statistics of rearrangements, in particular below the critical force, and point out its implications for force-extension experiments on single molecules. Received 18 June 2002 and Received in final form 23 September 2002 RID="a" ID="a"e-mail: muller@ipno.in2p3.fr  相似文献   

6.
We predict the elastic properties of mixed amphiphilic monolayers in the swollen state within the blob model using scaling arguments. First the elastic moduli and the spontaneous curvature of a bimodal brush are determined as a function of the composition and the relative chain length. We obtain simple and useful scaling functions which interpolate between the elastic moduli of a pure short-chain brush and a pure long-chain brush. By using the analogy between block copolymer interfaces and polymeric brushes, the effect of mixing on self-assembled diblock copolymer monolayers is investigated in the swollen state. We calculate various interfacial properties, such as the equilibrium surface coverage, interface curvature, and the mixing free energy as a function of the composition. In general, we find a nonlinear dependence on the composition, which deviates from the simple linear averaging of the properties of pure components. Our results are used to discuss a recent experiment on the effect of amphiphilic block copolymers on the efficiency of microemulsions. Received 29 December 2000 and Received in final form 19 March 2001  相似文献   

7.
We characterize in details the aging properties of the ferroelectric phase of KTa1-xNbx O3 (KTN), where both rejuvenation and (partial) memory are observed. In particular, we carefully examine the frequency dependence of several quantities that characterize aging, rejuvenation and memory. We find a marked subaging behaviour, with an a.c. dielectric susceptiblity scaling as ω, where t w is the waiting time. We suggest an interpretation in terms of pinned domain walls, much along the lines proposed for aging in a disordered ferromagnet, where both domain wall reconformations and overall (cumulative) domain growth are needed to rationalize the experimental findings. Received 10 November 2000 and Received in final form 20 February 2001  相似文献   

8.
Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving , in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay. Received 20 December 1999 and Received in final form 18 February 2000  相似文献   

9.
Sum rule for the optical absorption of an interacting many-polaron gas   总被引:1,自引:0,他引:1  
A sum rule for the first frequency moment of the optical absorption of a many-polaron system is derived, taking into account many-body effects in the system of constituent charge carriers of the many-polaron system. In our expression for the sum rule, the electron-phonon coupling and the many-body effects in the electron (or hole) system formally decouple, so that the many-body effects can be treated to the desired level of approximation by the choice of the dynamical structure factor of the electron (hole) gas. We calculate correction factors to take into account both low and high experimental cutoff frequencies. Received 26 April 2000 and Received in final form 5 December 2000  相似文献   

10.
This paper reports on the striking correlation between nanosize mosaic domain walls in YBCO films and 1D rows of parallel Josephson junctions, determining the J c vs.B curves. From X-ray data analysis, it results that the average “hidden" domain wall, faceted at a nanometric scale, is almost mimicking the Josephson Junction (JJ) 1D array. The assumption that the JJs and the domain-wall arrays are coincident, enables to find out the particular scaling field, making the J c vs.B curves independent of temperature. This scaling field can be interpreted in terms of the Josephson nature of the transport current across these particular patterns in the intermediate temperature range. By means of our model it is also possible to calculate two asymptotic behaviors of the pinning force as a function of field, for low and high fields, respectively. These behaviors are punctually repeated by the experimental results in the same asymptotic limit, so that two corresponding vortex regimes are clearly pointed out. All results can be interpreted by concluding that in the intermediate temperature range, the strong pinning observed in high quality YBCO films is due to the Josephson Junctions average patterns. These patterns are the counterpart related to the transport mechanisms of “hidden" structural nano-domains. Received 16 October 2000 and Received in final form 28 November 2000  相似文献   

11.
The irradiation effects induced by swift heavy ions are now widely described in `bulk' materials. It is shown here that the behaviour of matter under irradiation depends on its crystalline state in the sense that a given material is all the more sensitive to swift heavy ion irradiations as the mean crystallite size L is small. The present paper relates the experimental results obtained in yttrium oxide from `in situ' X-ray diffraction measurements. Three kinds of sample have been irradiated: sintered samples (L = 1μm), non-ground powders (L = 45 nm) and ground powders (L = 28 nm). A cubic to monoclinic phase transformation appears if the electronic energy loss of the incident particle is higher than a threshold. The comparison between the different kinds of samples reveals that this phase transformation is all the easier as the mean crystallite size of the target is weak. Received 27 January 2000 and Received in final form 13 December 2000  相似文献   

12.
We show that the electronic states in a one-dimensional (1D) Anderson model of diagonal disorder with long-range correlation proposed by de Moura and Lyra exhibit localization-delocalization phase transition in varying the energy of electrons. Using transfer matrix method, we calculate the average resistivity and investigate how it changes with the size of the system N. For given value of α (> 2) we find critical energies Ec1 and Ec2 such that the resistivity decreases with N as a power law ∝ N - γ for electron energies within the range of [E c1, E c2], and exponentially grows with N outside this range. Such behaviors persist in approaching the transition points and the exponent γ is in the range from 0.92 to 0.96. The origin of the delocalization in this 1D model is discussed. Received 18 December 2001 / Received in final form 2 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: sjxiong@nju.edu.cn  相似文献   

13.
A nanosecond scale in situ probe reveals that a bulk linear polymer undergoes a sharp phase transition as a function of the degree of conversion, as it nears the glass transition. The scaling behaviour is in the same universality class as percolation. The exponents γ and β are found to be 1.7±0.1 and 0.41±0.01 in agreement with the best percolation results in three dimensions. Received 29 August 2002 RID="a" ID="a"e-mail: erzan@gursey.gov.tr e-mail: erzan@itu.edu.tr  相似文献   

14.
We study the effect of an external field on (1 + 1) and (2 + 1) dimensional elastic manifolds, at zero temperature and with random bond disorder. Due to the glassy energy landscape the configuration of a manifold changes often in abrupt, “first order”-type of large jumps when the field is applied. First the scaling behavior of the energy gap between the global energy minimum and the next lowest minimum of the manifold is considered, by employing exact ground state calculations and an extreme statistics argument. The scaling has a logarithmic prefactor originating from the number of the minima in the landscape, and reads ΔE 1L θ[ln(L z L - ζ)]-1/2, where ζ is the roughness exponent and θ is the energy fluctuation exponent of the manifold, L is the linear size of the manifold, and Lz is the system height. The gap scaling is extended to the case of a finite external field and yields for the susceptibility of the manifolds ∼L 2D + 1 - θ[(1 - ζ)ln(L)]1/2. We also present a mean field argument for the finite size scaling of the first jump field, h 1L d - θ. The implications to wetting in random systems, to finite-temperature behavior and the relation to Kardar-Parisi-Zhang non-equilibrium surface growth are discussed. Received December 2000 and Received in final form April 2001  相似文献   

15.
We investigate the drift of an end-labeled telehelic polymer chain in a frozen disordered medium under the action of a constant force applied to the one end of the macromolecule by means of an off-lattice bead spring Monte Carlo model. The length of the polymers N is varied in the range 8 < N < 128, and the obstacle concentration in the medium C is varied from zero up to the percolation threshold C≈ 0.75. For field intensities below a C-dependent critical field strength B c, where jamming effects become dominant, we find that the conformational properties of the drifting chains can be interpreted as described by a scaling theory based on Pincus blobs. The variation of drag velocity with C in this interval of field intensities is qualitatively described by the law of Mackie-Meares. The threshold field intensity B c itself is found to decrease linearly with C. Received 20 August 2001 and Received in final form 19 November 2001  相似文献   

16.
We study the behavior of systems in which the interaction contains a long-range component that does not dominate the critical behavior. Such a component is exemplified by the van der Waals force between molecules in a simple liquid-vapor system. In the context of the mean spherical model with periodic boundary conditions we are able to identify, for temperatures close above T c, finite-size contributions due to the subleading term in the interaction that are dominant in this region decaying algebraically as a function of L. This mechanism goes beyond the standard formulation of the finite-size scaling but is to be expected in real physical systems. We also discuss other ways in which critical point behavior is modified that are of relevance for analysis of Monte Carlo simulations of such systems. Received 21 November 2000 and Received in final form 28 February 2001  相似文献   

17.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

18.
We suggest a new, renormalization group (RG) based, nonperturbative method for treating the intermittency problem of fully developed turbulence which also includes the effects of a finite boundary of the turbulent flow. The key idea is not to try to construct an elimination procedure based on some assumed statistical distribution, but to make an ansatz for possible RG transformations and to pose constraints upon those, which guarantee the invariance of the nonlinear term in the Navier-Stokes equation, the invariance of the energy dissipation, and other basic properties of the velocity field. The role of length scales is taken to be inverse to that in the theory of critical phenomena; thus possible intermittency corrections are connected with the outer length scale. Depending on the specific type of flow, we find different sets of admissible transformations with distinct scaling behaviour: for the often considered infinite, isotropic, and homogeneous system K41 scaling is enforced, but for the more realistic plane Couette geometry no restrictions on intermittency exponents were obtained so far. Received: 28 December 1997 / Accepted: 6 August 1998  相似文献   

19.
The level crossing mechanism between the ground and the first excited state of Na:Fe6 antiferromagnetically coupled iron rings is studied by torque magnetometry down to 40 mK and in magnetic fields up to 28 T. The step width at the crossing field Bc assumes a finite value at the lowest temperatures. This fact is ascribed to the presence of level anticrossing, not expected for a ring with axial, i.e. S6 point group, symmetry. Assuming a reduced symmetry, we revised the model Hamiltonian of such a spin system by introducing a Dzyaloshinsky-Moriya (DM) term and we show, by exact diagonalization, that DM term can account for the mixing of states with different parity. In particular, analytical as well numerical analysis show that the introduction of the DM term may contribute to the broadening of the torque step as well as for the finite energy gap at Bc observed by heat capacity in a similar ring Li:Fe6 as previously reported [#!aclbg!#]. Received 3 September 2002 Published online 31 December 2002  相似文献   

20.
We discuss the properties of a large number N of one-dimensional (bounded) locally periodic potential barriers in a finite interval. We show that the transmission coefficient, the scattering cross section σ, and the resonances of σ depend sensitively upon the ratio of the total spacing to the total barrier width. We also show that a time dependent wave packet passing through the system of potential barriers rapidly spreads and deforms, a criterion suggested by Zaslavsky for chaotic behaviour. Computing the spectrum by imposing (large) periodic boundary conditions we find a Wigner type distribution. We investigate also the S-matrix poles; many resonances occur for certain values of the relative spacing between the barriers in the potential. Received 1st August 2001 and Received in final form 18 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号