首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their small size (1-100 nm), nanoparticles exhibit novel materials properties that differ considerably from those of the bulk solid state. Especially in recent years, the interests in nanometer-scale magnetic particles are growing based on their potential application as high density magnetic storage media. A unique reverse micelle method has been developed to prepare gold-coated iron nanoparticles. XRD, UV/vis, TEM and magnetic measurements are used to characterize the nanocomposites. XRD only gives FCC paterns of gold for the obtained nanoparticles. There is a red shift and broadening of Au@Fe colloid relative to pure gold colloid in the absorption spectra. TEM results show that the average size of Au@Fe nanoparticle is about 10 nm. These nanoparticles self-assembled into wires in micron level under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature of 42 K. Coercivity of the obtained nanoparticles decreases with the measuring temperature, which are 730 Oe,320 Oe and 0 at 2 K, 10 K and 300 K, respectively.  相似文献   

2.
Recovery and reuse of expensive catalysts after catalytic reactions are important factors for sustainable process management. The aim of this Review is to highlight the progress in the formation and catalytic applications of magnetic nanoparticles and magnetic nanocomposites. Directed functionalization of the surfaces of nanosized magnetic materials is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles in a variety of solid matrices allows the combination of well‐known procedures for catalyst heterogenization with techniques for magnetic separation.  相似文献   

3.
A quadruple‐responsive nanocomposite that responds to temperature, pH, magnetic field, and NIR is obtained by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and gold nanorods (AuNRs) into a dextran‐based smart copolymer network. The dual‐sensitive copolymer is prepared by sequential RAFT polymerization of methacrylic acid and N‐isopropylacrylamide from trithiocarbonate groups linked to dextran in one pot. These functionalized nanocomposites with superior stability can respond to the four stimuli mentioned above well. As evidenced by UV–vis and TEM measurements, the temperature‐induced unusual blue‐shift in the longitudinal plasmon band is possibly due to the side‐to‐side assembly of AuNRs.  相似文献   

4.
Using a one-step procedure we have prepared magnetic fluids comprising of polyelectrolyte stabilized magnetite nanoparticles. These nanocomposites are comprised of linear, chain-like assemblies of magnetic nanoparticles, which can be aligned in parallel arrays by an external magnetic field. We have shown the potential use of these materials as contrast agents by measuring their MR response in live rats. The new magnetic fluids have demonstrated good biocompatibility and potential for in vivo MRI diagnostics.  相似文献   

5.
采用聚苯乙烯(PS)包裹Fe3O4磁性纳米粒子,制得Fe3O4@PS复合微球,以此作为磁性载体,通过微球表面的羧基将聚酰胺-胺类树形大分子(PAMAM)连接到磁性载体上,然后使Ag纳米粒子镶嵌在树形分子层中,制得可再生的金属复合催化粒子Fe3O4@PS@PAMAM-Ag.并采用红外光谱、扫描电镜、电感耦合等离子体质谱(ICP-MS)和X射线光电子能谱等方法对复合催化粒子进行了表征,结果表明,树形分子可以较好地分散和稳定金属Ag纳米粒子,所制复合催化粒子表面Ag含量为1.64%,具有较高的催化还原对硝基苯酚的活性.同时,利用外加磁场可以方便快捷地从反应体系中分离出来,继续用于下一次反应中,复合催化粒子循环使用6次后,仍保持完全的催化性能.  相似文献   

6.
The objective of the present investigation is to fabricate the gold anchor polyaniline (PANI) based nanocomposites which is prepared using itaconic acid (IA) with Fe3O4 by the simple polymerization reaction. The developed multi responsive antibacterial magnetic polymeric composite is represented as Au@PANI–IA–Fe3O4. Further, the chemical structure, thermal and magnetic properties such as FT-IR, TGA/DTA, and VSM analysis are studied. The TEM and SEM/EDX are used to find the shape and composition of gold nanoparticles. The enhanced magnetic properties of ferrite composite are exhibited and the antibacterial properties are determined using E. coli (gram -ve) and S. aureus (gram +ve) bacteria’s. The results of biological properties such as antifungal and antimicrobial are also studied critically conferred. Based on the experimental results, the fabrication method of Au@/PANI/IA/Fe3O4 magnetic nanocomposites, and the relationship between the structure and biological properties are discussed in detail.  相似文献   

7.
Hybrid nanomaterials have received voluminous interest due to the combination of unique properties of organic and inorganic component in one material. In this class, magnetic polymer nanocomposites are of particular interest because of the combination of excellent magnetic properties, stability, and good biocompatibility. Organic–inorganic magnetic nanocomposites can be prepared by in situ, ex situ, microwave reflux, co-precipitation, melt blending, and ceramic–glass processing and plasma polymerization techniques. These nanocomposites have been exploited for in vivo imaging, as superparamagnetic or negative contrast agents, drug carriers, heavy metal adsorbents, and magnetically recoverable photocatalysts for degradation of organic pollutants. This review article is mainly focused on fabrication of magnetic polymer nanocomposites and their applications. Different types of magnetic nanoparticles, methods of their synthesis, properties, and applications have also been reviewed briefly. The review also provides detailed insight into various types of magnetic nanocomposites and their synthesis. Diverse applications of magnetic nanocomposites including environmental and biomedical uses have been discussed.  相似文献   

8.
A unique fluorescent-magnetic hybrid bimodal nanocomposite was prepared by the layer-by-layer self-assembly (LbL) technique fabrication of water-soluble conjugated polymers (CPs) onto the CoFe2O4@SiO2 core-shell nanoparticles (NPs). First, magnetic CoFe2O4 nanoparticles were prepared as the magnetic core and coated with a SiO2 shell to obtain a good dispersion in aqueous solution. Then the polyelectrolytes and cationic conjugated polymer PFV was assembled onto the surface of core-shell nanoparticles by the LbL technique. The prepared nanocomposites were magnetically responsive and fluorescent, simultaneously. Finally, the biomacromolecule heparin sodium (HS) was then assembled on the outer layer of the nanocomposite to provide a cytocompatible surface. The nanocomposites show monodispersity, good fluorescence and good biocompatibility that are useful for efficient cellular imaging. Moreover, the colloidal stability and the cellular uptake ability of the nanocomposition with HS layer were efficiently improved.  相似文献   

9.
Hierarchical porous zeolitic imidazolate frameworks (HZIFs) are promising materials for several applications, including adsorption, separation, and nanomedicine. Herein, the conversion of zinc hydroxide nitrate nanosheets into HZIF-8 nanocomposite with graphene oxide (GO) and magnetic nanoparticles (MNPs) is reported. The conversion takes place at room temperature in water. This approach has been successfully applied for the formation of leaf-like ZIF(ZIF-L), and their nanocomposites with nanoparticles, such as GO and MNPs. This method offers a simple approach for the synthesis of tunable pore structure using nanoparticles and fast room temperature conversion (30 min) without any visible residual impurities of zinc hydroxide nitrates. The applications of HZIF-8, ZIF-L, and their nanocomposites, for CO2 sorption, exhibit excellent adsorption properties. The synthesized composites exhibit enhanced CO2 adsorption capacity due to the synergistic effect between nanoparticles (GO, or MNPs), and ZIF-8. The materials have good potential for further applications.  相似文献   

10.
Permanent magnets are a class of critical materials for information storage, energy storage, and other magneto-electronic applications. Compared with conventional bulk magnets, magnetic nanoparticles (MNPs) show unique size-dependent magnetic properties, which make it possible to control and optimize their magnetic performance for specific applications. The synthesis of MNPs has been intensively explored in recent years. Among different methods developed thus far, chemical synthesis based on solution-phase reactions has attracted much attention owing to its potential to achieve the desired size, morphology, structure, and magnetic controls. This Minireview focuses on the recent chemical syntheses of strongly ferromagnetic MNPs (Hc>10 kOe) of rare-earth metals and FePt intermetallic alloys. It further discusses the potential of enhancing the magnetic performance of MNP composites by assembly of hard and soft MNPs into exchange-coupled nanocomposites. High-performance nanocomposites are key to fabricating super-strong permanent magnets for magnetic, electronic, and energy applications.  相似文献   

11.
Hybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto‐elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross‐linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto‐elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field.  相似文献   

12.
In this study, a unique magnetic, pH, and thermo‐responsive hydrogel nanocomposite was synthesized via surface reversible addition fragmentation chain transfer (RAFT) copolymerization of acrylic acid (AA) and N‐isopropyl acrylamide (NIPAM) in the presence of magnetic β‐cyclodextrin (β‐CD). The nanocomposite demonstrated a pH‐responsiveness behavior at pHs 3 and 9. Moreover, swelling behaviors of nanocomposite were measured in solutions with various temperatures. Furthermore, the nanocomposites exhibited high swelling capacity by applying an external magnetic field because of the presence of Fe3O4 nanoparticles in the polymer structure. Besides, the doxorubicin (DOX) loading and releasing behaviors of the hydrogel nanocomposites were studied because of the stimuli‐responsive properties of the synthesized carriers. The adsorption of DOX obeyed a pseudo‐second‐order model and fitted well to the Langmuir isotherm model with the maximum adsorption capacity uptake of 291 mg g?1. In conclusion, the hydrogel nanocomposites were found to be as potential nanocarriers for use in controlled release applications.  相似文献   

13.
Fluoroalkyl end-capped vinylphosphonic acid cooligomers-encapsulated magnetite nanocomposites were prepared by the magnetization of aqueous ferric and ferrous ions in the presence of the corresponding fluorinated cooligomers and magnetic nanoparticles under alkaline conditions. These fluorinated cooligomers magnetic composites are nanometer size-controlled very fine particles and have a good dispersibility and stability in water and traditional organic solvents. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) to exhibit a good oleophobicity imparted by fluorine on their surface. Fluoroalkyl end-capped 2-methacryloyloxyethanesulfonic acid oligomer-encapsulated magnetite nanocomposites and fluoroalkyl end-capped 2-acrylamide-2-methylpropanesulfonic acid oligomer-encapsulated magnetite nanocomposites were prepared in good isolated yields by the magnetization of iron chlorides in the presence of the corresponding oligomers and magnetic nanoparticles under similar conditions. Colloidal stability of these fluorinated nanocomposites thus obtained in water was demonstrated to become extremely higher than that of fluorinated vinylphosphonic acid cooligomers/magnetic nanocomposites.  相似文献   

14.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

15.
Hybrid nanocomposites based on magnetic nanoparticles dispersed in liquid crystalline elastomers are fascinating emerging materials. Their expected strong magneto‐elastic coupling may open new applications as actuators, magnetic switches, and for reversible storage of magnetic information. We report here the synthesis of a novel hybrid ferromagnetic liquid crystalline elastomer. In this material, highly anisotropic Co nanorods are aligned through a cross‐linking process performed in the presence of an external magnetic field. We obtain a highly anisotropic magnetic material which exhibits remarkable magneto‐elastic coupling. The nanorod alignment can be switched at will at room temperature by weak mechanical stress, leading to a change of more than 50 % of the remnant magnetization ratio and of the coercive field.  相似文献   

16.
Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment.  相似文献   

17.
Functional inorganic nanofillers for transparent polymers   总被引:6,自引:0,他引:6  
The integration of inorganic nanoparticles into polymers has been used for the functionalization of polymer materials with great success. Whereas in traditional polymer composites, micron sized particles or agglomerates typically cause significant light scattering hampering optical applications, in nanocomposites the particle dimensions are small enough for the production of highly transparent composites. A challenge for the generation of such materials is to develop an integrated synthesis strategy adapting particle generation, surface modification and integration inside the polymer. Surface grafting using polymerizable surfactants or capping agents allows for linking the particles to the polymer. Novel techniques such as in situ polymerization and in situ particle processing are beneficial to avoid aggregation of inorganic particles inside the polymer matrix. The functions associated with inorganic fillers are widespread. Layered silicates and related materials are nowadays commercially available for improving mechanical and barrier properties in packaging. With the availability of highly transparent materials, the focus has shifted towards optical functions such as luminescence and UV-protection in transparent polymers. IR-active fillers are used in laser-holography for transparent poly(methyl methacrylate) (PMMA) nanocomposites. Refractive index modulation and ultrahigh refractive index films were developed based on inorganic materials such as PbS. The integration of magnetic nanoparticles has a great potential for applications such as electromagnetic interference shielding and magneto-optical storage.This tutorial review will summarize functions associated with the integration of inorganic nanofillers in polymers with a focus on optical properties.  相似文献   

18.
The polyaniline (PANI)/iron nanocomposites have been prepared by high‐energy ball milling under cryogenic temperatures, namely cryomilling, of PANI with Fe nanoparticles. It takes 5 h to refine the Fe into an average grain size of 20 nm and to get homogeneously dispersed in PANI matrix. The obtained PANI/Fe nanocomposites have a maximum conductivity of 0.78 S cm?1 after 2‐h cryomilling, whereas its coercivity increases monotonously with time in the range of experiment up to 10 h. It is found that the sizes of Fe particles have obvious effects on both electrical and magnetic properties. When compared with micrometer Fe particles as raw materials, Fe nanoparticles result in somewhat lower conductivity but a much higher coercivity exceeding 400 Oe. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1571–1576, 2008  相似文献   

19.
Using a unidirectional heat transfer apparatus, the roles of nanoparticle geometry, loading, dispersion and temperature on the thermal conductivity of polymer nanocomposites are investigated. The polymer nanocomposites (PNC) consist of epoxy matrices filled with silica nanopowder and carbon nanotubes, respectively, as well as poly (2-vinylpyridine) (P2VP) matrices loaded with silica nanoparticles. First, it is shown that thermal conductivity generally increases with nanofiller loading. These results are also reasonably described by the three phase Lewis-Nielsen or Halpin-Tsai analytical models. More importantly, it has been also demonstrated that the thermal conductivity of the polymer nanocomposites greatly depends on the dispersion state of the nanofillers. Furthermore, the effect of temperature on the thermal behavior of PNCs is briefly discussed. These results emphasize the important role of nanoparticles content and dispersion state on the thermal characteristics of polymer nanocomposites, which can be used to design composite materials with tunable thermal behavior.  相似文献   

20.
This letter reports the synthesis and characterization of functionalized magnetic nanoparticles associated with chemical gels and their application to the conservation of cultural heritage. Magnetic nanoparticles, which are associated with acrylamide ethylene oxide polymers, produce a sponge that can be loaded with oil-in-water microemulsions, forming a magnetically responsive gel-like system and acting as a permanent hydrogel. The magnetic gel-like system can be used for specific applications in detergents or in the release of the loaded material. The system can be magnetically manipulated and cleaned from the loaded materials and then dried and reused for a different application. We report an important application of this new nanomagnetic responsive material in the field of cultural heritage conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号