首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find two two-qubit bipartite states ρ1, ρ2 such that arbitrarily many copies of one or the other cannot exhibit nonlocal correlations in a two-setting-two-outcome Bell scenario. However, the bipartite state ρ1 ? ρ2 violates the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality [J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).] by an amount of 2.023. We also identify a CHSH-local state ρ such that ρ?2 is CHSH inequality-violating. The tools employed can be easily adapted to find instances of nonlocality activation in arbitrary Bell scenarios.  相似文献   

2.
We generalize the correlation functions of the Clauser-Horne-Shimony-Holt (CHSH) inequality to arbitrarily high-dimensional systems. Based on this generalization, we construct the general CHSH inequality for bipartite quantum systems of arbitrarily high dimensionality, which takes the same simple form as CHSH inequality for two dimensions. This inequality is optimal in the same sense as the CHSH inequality for two-dimensional systems, namely, the maximal amount by which the inequality is violated consists of the maximal resistance to noise. We also discuss the physical meaning and general definition of the correlation functions. Furthermore, by giving another specific set of the correlation functions with the same physical meaning, we realize the inequality presented by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)]].  相似文献   

3.
We give a partial list of 26 tight Bell inequalities for the case where Alice and Bob choose among four two-outcome measurements. All tight Bell inequalities with less settings are reviewed as well. For each inequality we compute numerically the maximal quantum violation, the resistance to noise and the minimal detection efficiency required for closing the detection loophole. Surprisingly, most of these inequalities are outperformed by the CHSH inequality.  相似文献   

4.
Ikko Hamamura 《Physics letters. A》2018,382(36):2573-2577
Entanglement of quantum states is absolutely essential for modern quantum sciences and technologies. It is natural to extend the notion of entanglement to quantum observables dual to quantum states. For quantum states, various separability criteria have been proposed to determine whether a given state is entangled. In this Letter, we propose a separability criterion for specific quantum effects (binary observables) that can be regarded as a dual version of the Bell–Clauser–Horne–Shimony–Holt (Bell–CHSH) inequality for quantum states. The violation of the dual version of the Bell–CHSH inequality is confirmed by using IBM's cloud quantum computer. As a consequence, the violation of our inequality rules out the maximal tensor product state space, that satisfies information causality and local tomography. As an application, we show that an entangled observable which violates our inequality is useful for quantum teleportation.  相似文献   

5.
One of the most significant and well-known properties of entangled states is that they may lead to violations of Bell inequalities and are thus inconsistent with any local-realistic theory. However, there are entangled states that cannot violate any Bell inequality, and in general the precise relationship between entanglement and observable nonlocality is not well understood. We demonstrate that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality can be demonstrated in a certain kind of Bell experiment for all entangled states. Our proof of the result consists of two main steps. We first provide a simple characterization of the set of states that do not violate the CHSH inequality even after general local operations and classical communication. Second, we prove that for each entangled state sigma, there exists another state rho not violating the CHSH inequality, such that rhomultiply sign in circlesigma violates the CHSH inequality.  相似文献   

6.
Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.  相似文献   

7.
There are increasingly suggestions for computer simulations of quantum statistics which try to violate Bell type inequalities via classical, common cause correlations. The Clauser–Horne–Shimony–Holt (CHSH) inequality is very robust. However, we argue that with the Einstein–Podolsky–Rosen setup, the CHSH is inferior to the Bell inequality, although and because the latter must assume anti-correlation of entangled photon singlet states. We simulate how often quantum behavior violates both inequalities, depending on the number of photons. Violating Bell 99% of the time is argued to be an ideal benchmark. We present hidden variables that violate the Bell and CHSH inequalities with 50% probability, and ones which violate Bell 85% of the time when missing 13% anti-correlation. We discuss how to present the quantum correlations to a wide audience and conclude that, when defending against claims of hidden classicality, one should demand numerical simulations and insist on anti-correlation and the full amount of Bell violation.  相似文献   

8.
A proof of Bell's theorem without inequalities and involving only two observers is given by suitably extending a proof of the Bell-Kochen-Specker theorem due to Mermin. This proof is generalized to obtain an inequality-free proof of Bell's theorem for a set of n Bell states (with n odd) shared between two distant observers. A generalized CHSH inequality is formulated for n Bell states shared symmetrically between two observers and it is shown that quantum mechanics violates this inequality by an amount that grows exponentially with increasing n.  相似文献   

9.
We consider violation of CHSH inequality for states before and after entanglement swapping. We present a pair of initial states which do not violate CHSH inequality however the final state violates CHSH inequality for some results of Bell measurement performed in order to swap entanglement.  相似文献   

10.
For the formulation of Bell inequalities, it is important to include not just N-site correlation functions, but also (N-n)-site correlation functions. In this article, we focus on a three-qubit Bell inequality, which has been shown to be a good candidate for generalizing Gisin’s theorem to three qubits. The three-qubit Bell inequality can be used to detect the W-type entanglement in a proposed experiment.  相似文献   

11.
In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state.  相似文献   

12.
It is known that the inevitable interaction of the entangled qubits with their environments may result in the degradation of quantum correlation.We study the decoherence of two remote qubits under general local single-and two-sided amplitude-damping channel(ADC).By using concurrence,quantum discord and Clauser-Horne-ShimonyHolt(CHSH)inequality,we find that the relation between the residual quantum correlations and the initial ones are different.Recently,Wang et al.[Int.J.Theor.Phys.54(2015)5]showed that there exist a set of partially entangled states that are more robust than maximally entangled states in terms of the residual quantum correlation measured by concurrence,fully entangled fraction and quantum discord,respectively.Here we find that both in single-and two-sided ADC,only the evolution of CHSH inequality with the initial parameter is proportional to that of the initial nonlocality.That means the initial state with maximally nonlocality will retain its role in the evolution.It implies that the evolution of nonlocality may reveal the characteristics of quantum state better.Furthermore,we discuss the evolutions of the three different quantum measurements with the initial parameter under generalized amplitude damping channel(GADC)and find that they are all proportional to that of the initial state.  相似文献   

13.
We derive a generalized Bell inequality for N qubits which involves an arbitrary number of settings for each of the local measuring apparatuses. The inequality forms a necessary condition for the existence of a local realistic model for the values of a correlation function, given in a n-setting Bell experiment. We show that a local realistic model for the values of a correlation function, given in a two-setting Bell experiment, cannot construct a local realistic model for the values of a correlation function, given in an arbitrary number of n-setting Bell experiment, even though there exist two-setting models for the n measurement directions chosen in the given n-setting experiment. Therefore, the property of two-setting model is different from the property of n-setting model. We discuss classification of local realistic theories in further detail more than the result presented in (J. Phys. A: Math. Theor. 41:155308, 2008). The generalized Bell inequality covers the previous results correctly.  相似文献   

14.
Relativistic causality, namely, the impossibility of signaling at superluminal speeds, restricts the kinds of correlations which can occur between different parts of a composite physical system. Here we establish the basic restrictions which relativistic causality imposes on the joint probabilities involved in an experiment of the Einstein–Podolsky–Rosen–Bohm type. Quantum mechanics, on the other hand, places further restrictions beyond those required by general considerations like causality and consistency. We illustrate this fact by considering the sum of correlations involved in the CHSH inequality. Within the general framework of the CHSH inequality, we also consider the nonlocality theorem derived by Hardy, and discuss the constraints that relativistic causality, on the one hand, and quantum mechanics, on the other hand, impose on it. Finally, we derive a simple inequality which can be used to test quantum mechanics against general probabilistic theories.  相似文献   

15.
We propose the first correct special-purpose quantum circuits for preparation of Bell diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and testing complex aspects of their quantum correlations in the full parameter space. Among the circuits proposed, one involves only two quantum bits but requires adapted quantum tomography routines handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality, steering and discord, are experimentally evaluated over the full parameter space and compared with theory. As a by-product of this work, we also find a remarkable general inequality between “quantum discord” and “asymmetric relative entropy of discord”: the former never exceeds the latter. We also prove that for all BDS the two coincide.  相似文献   

16.
Continuous variable entanglement and violation of Bell inequality for two modes are investigated in a three-level cascade atomic system. Entanglement of the system is demonstrated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000)2722]. Violation of Bell inequality is studied within the framework of a quantum theory of multiwave mixing. It is shown that there are some states that are entangled but do not violate the Bell inequality.  相似文献   

17.
We present a much simplified version of the Collins-Gisin-Linden-Massar-Popescu inequality for the 2x2xd Bell scenario. Numerical maximization of the violation of this inequality over all states and measurements suggests that the optimal state is far from maximally entangled, while the best measurements are the same as conjectured best measurements for the maximally entangled state. For very large values of d the inequality seems to reach its minimal value given by the probability constraints. This gives numerical evidence for a tight quantum Bell inequality (or generalized Csirelson inequality) for the 2x2xinfinity scenario.  相似文献   

18.
We discuss the relations between the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality for systems of two qubits on the one side and entanglement of formation, local filtering operations, and the entropy and purity on the other. We calculate the extremal Bell violations for a given amount of entanglement of formation and characterize the respective states, which turn out to have extremal properties also with respect to the entropy, purity, and several entanglement monotones. The optimal local filtering operations leading to the maximal Bell violation for a given state are provided, and the special role of the resulting Bell diagonal states in the context of Bell inequalities is discussed.  相似文献   

19.
For a wide range of phenomena, current computational ability does not always allow for atomistic simulations of high-dimensional molecular systems to reach time scales of interest. Coarse-graining (CG) is an established approach to alleviate the impact of computational limits while retaining the same algorithms used in atomistic simulations. It is important to understand how algorithms such as Langevin integrators perform on non-trivial CG molecular systems, and in particular how large of an integration time step can be used without introducing unacceptable amounts of error into averaged quantities of interest. To investigate this, we examined three different Langevin integrators on a CG polymer melt: the recently developed BAOAB method by Leimkuhler and Matthews [J. Chem. Phys. 138 (17), 05B601_1 (2013)], the Grønbech-Jensen and Farago method [Mol. Phys. 111 (8), 983-991 (2013)], or G-JF, and the frequently used Brünger–Brooks–Karplus integrator [Chem. Phys. Lett. 105 (5), 495-500 (1984)], known as BBK. We compute and analyse key statistical properties for each. Our results indicate that the integrators perform similarly for a small friction parameter; however outside this regime, the use of large integration steps produces significant deviations from the predicted diffusivity and steady-state distributions for all methods examined with the exception of G-JF.  相似文献   

20.
We investigate the nonlocality of Schmidt-correlated (SC) states, and present analytical expressions of the maximum violation value of Bell inequalities. It is shown that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality is necessary and sufficient for the nonlocality of two-qubit SC states, whereas the violation of the Svetlichny inequality is only a sufficient condition for the genuine nonlocality of three-qubit SC states. Furthermore, the relations among the maximum violation values, concurrence, and relative entropy entanglement are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号