首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state.  相似文献   

2.
One of the most significant and well-known properties of entangled states is that they may lead to violations of Bell inequalities and are thus inconsistent with any local-realistic theory. However, there are entangled states that cannot violate any Bell inequality, and in general the precise relationship between entanglement and observable nonlocality is not well understood. We demonstrate that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality can be demonstrated in a certain kind of Bell experiment for all entangled states. Our proof of the result consists of two main steps. We first provide a simple characterization of the set of states that do not violate the CHSH inequality even after general local operations and classical communication. Second, we prove that for each entangled state sigma, there exists another state rho not violating the CHSH inequality, such that rhomultiply sign in circlesigma violates the CHSH inequality.  相似文献   

3.
We consider violation of CHSH inequality for states before and after entanglement swapping. We present a pair of initial states which do not violate CHSH inequality however the final state violates CHSH inequality for some results of Bell measurement performed in order to swap entanglement.  相似文献   

4.
Despite claims that Bell's inequalities are based on the Einstein locality condition, or equivalent, all derivations make an identical mathematical assumption that local hidden-variable theories produce a set of positive-definite probabilities for detecting a particle with a given spin orientation. The standard argument is that because quantum mechanics assumes that particles are emitted in a superposition of states the theory cannot produce such a set of probabilites. We examine a paper by Eberhard, and several similar papers, which claim to show that a generalized Bell inequality, the CHSH inequality, can be derived solely on the basis of the locality condition, without recourse to hidden variables. We point out that these authors nonetheless assumes a set of positive-definite probabilities, which supports the claim that hidden variables or locality is not at issue here, positive-definite probabilities are. We demonstrate that quantum mechanics does predict a set of probabilities that violate the CHSH inequality; however these probabilities are not positive-definite. Nevertheless, they are physically meaningful in that they give the usual quantum-mechanical predictions in physical situations. We discuss in what sense our results are related to the Wigner distribution.  相似文献   

5.
We give a partial list of 26 tight Bell inequalities for the case where Alice and Bob choose among four two-outcome measurements. All tight Bell inequalities with less settings are reviewed as well. For each inequality we compute numerically the maximal quantum violation, the resistance to noise and the minimal detection efficiency required for closing the detection loophole. Surprisingly, most of these inequalities are outperformed by the CHSH inequality.  相似文献   

6.
Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.  相似文献   

7.
One of the most striking nonclassical features of quantum mechanics is in the correlations it predicts between spatially separated measurements. In local hidden variable theories, correlations are constrained by Bell inequalities, but quantum correlations violate these. However, experimental imperfections lead to loopholes whereby LHV correlations are no longer constrained by Bell inequalities, and violations can be described by LHV theories. For example, loopholes can emerge through selective detection of events. In this Letter, we introduce a clean, operational picture of multiparty Bell tests, and show that there exists a nontrivial form of loophole-free postselection. Surprisingly, the same postselection can enhance quantum correlations, and unlock a connection between nonclassical correlations and nonclassical computation.  相似文献   

8.
Cirel'son inequality states that the absolute value of the combination of quantum correlations appearing in the Clauser-Horne-Shimony-Holt (CHSH) inequality is bound by 2 square root of (2). It is shown that the correlations of two qubits belonging to a three-qubit system can violate the CHSH inequality beyond 2 square root of (2). Such a violation is not in conflict with Cirel'son's inequality because it is based on postselected systems. The maximum allowed violation of the CHSH inequality, 4, can be achieved using a Greenberger-Horne-Zeilinger state.  相似文献   

9.
In the celebrated paper [D. Collins, N. Gisin, J. Phys. A Math. Gen. 37 (2004) 1775], Collins and Gisin presented for the first time a three-setting Bell inequality (here we call it CG inequality for simplicity) which is relevant to the Clauser–Horne–Shimony–Holt (CHSH) inequality. Inspired by their brilliant ideas, we obtained some multi-setting tight Bell inequalities, which are relevant to the CHSH inequality and the CG inequality. Moreover, we generalized the method in the paper [J.L. Chen, D.L. Deng, Phys. Rev. A 79 (2009) 012115] to construct Bell inequality for qubits to higher dimensional system. Based on the generalized method, we present, for the first time, a three-setting tight Bell inequality for two qutrits, which is maximally violated by nonmaximally entangled states and relevant to the Collins–Gisin–Linden–Massar–Popescu inequality.  相似文献   

10.
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.  相似文献   

11.
A proof of Bell's theorem without inequalities and involving only two observers is given by suitably extending a proof of the Bell-Kochen-Specker theorem due to Mermin. This proof is generalized to obtain an inequality-free proof of Bell's theorem for a set of n Bell states (with n odd) shared between two distant observers. A generalized CHSH inequality is formulated for n Bell states shared symmetrically between two observers and it is shown that quantum mechanics violates this inequality by an amount that grows exponentially with increasing n.  相似文献   

12.
叶世强  陈小余 《物理学报》2017,66(20):200301-200301
贝尔不等式在定域性和实在性的双重假设下,对于被分隔的粒子同时被测量时其结果的可能关联程度建立了一个严格的限制,违反贝尔不等式确保量子态存在纠缠.本文利用量子相干性的l1和相对熵测度构建了四体量子贝尔不等式,发现一般实系数Greenberger-Horne-Zeilinger纯态和簇纯态总是违反四体相对熵相干性测度贝尔不等式,因此违反四体相对熵相干性测度贝尔不等式的这些态是纠缠态.  相似文献   

13.
Ikko Hamamura 《Physics letters. A》2018,382(36):2573-2577
Entanglement of quantum states is absolutely essential for modern quantum sciences and technologies. It is natural to extend the notion of entanglement to quantum observables dual to quantum states. For quantum states, various separability criteria have been proposed to determine whether a given state is entangled. In this Letter, we propose a separability criterion for specific quantum effects (binary observables) that can be regarded as a dual version of the Bell–Clauser–Horne–Shimony–Holt (Bell–CHSH) inequality for quantum states. The violation of the dual version of the Bell–CHSH inequality is confirmed by using IBM's cloud quantum computer. As a consequence, the violation of our inequality rules out the maximal tensor product state space, that satisfies information causality and local tomography. As an application, we show that an entangled observable which violates our inequality is useful for quantum teleportation.  相似文献   

14.
A multipartite quantum state violates a Bell inequality asymptotically if, after jointly processing by general local operations an arbitrarily large number of copies of it, the result violates the inequality. In the bipartite case we show that asymptotic violation of the Clauser-Horne-Shimony-Holt inequality is equivalent to distillability. Hence, bound entangled states do not violate it. In the multipartite case we consider the complete set of full-correlation Bell inequalities with two dichotomic observables per site. We show that asymptotic violation of any of these inequalities by a multipartite state implies that pure-state entanglement can be distilled from it, although the corresponding distillation protocol may require that some of the parties join into several groups. We also obtain the extreme points of the set of distributions generated by measuring N quantum systems with two dichotomic observables per site.  相似文献   

15.
We discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed.  相似文献   

16.
While all bipartite pure entangled states violate some Bell inequality, the relationship between entanglement and nonlocality for mixed quantum states is not well understood. We introduce a simple and efficient algorithmic approach for the problem of constructing local hidden variable theories for quantum states. The method is based on constructing a so-called symmetric quasiextension of the quantum state that gives rise to a local hidden variable model with a certain number of settings for the observers Alice and Bob.  相似文献   

17.
All separable states satisfy all Bell-type inequalities, which involve as their assumption only existence of local realistic (local hidden variable) models of the correlations of spatially separated systems, observed by two or more observers making independent decisions on what to measure (free will). The recent observation by Loubenets, that some separable states do not satisfy the original Bell inequality (1964) has no consequences whatsoever for the studies of the relation of separability with local realism. The original Bell inequality was derived using an additional assumption that the local results for a certain pair of local settings reveal perfect Einstein–Podolsky–Rosen (EPR) correlations. Therefore violation of this inequality by some quantum predictions implies that either (i) the predictions do not allow a local realistic model, or (ii) the predictions do not have the required EPR correlations, or finally both (i) and (ii).  相似文献   

18.
We investigate the nonlocality of Schmidt-correlated (SC) states, and present analytical expressions of the maximum violation value of Bell inequalities. It is shown that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality is necessary and sufficient for the nonlocality of two-qubit SC states, whereas the violation of the Svetlichny inequality is only a sufficient condition for the genuine nonlocality of three-qubit SC states. Furthermore, the relations among the maximum violation values, concurrence, and relative entropy entanglement are discussed.  相似文献   

19.
We propose the first correct special-purpose quantum circuits for preparation of Bell diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and testing complex aspects of their quantum correlations in the full parameter space. Among the circuits proposed, one involves only two quantum bits but requires adapted quantum tomography routines handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality, steering and discord, are experimentally evaluated over the full parameter space and compared with theory. As a by-product of this work, we also find a remarkable general inequality between “quantum discord” and “asymmetric relative entropy of discord”: the former never exceeds the latter. We also prove that for all BDS the two coincide.  相似文献   

20.
By using the Born Markovian master equation, we study the relationship among the Einstein–Podolsky–Rosen (EPR) steering, Bell nonlocality, and quantum entanglement of entangled coherent states (ECSs) under decoherence. We illustrate the dynamical behavior of the three types of correlations for various optical field strength regimes. In general, we find that correlation measurements begin at their maximum and decline over time. We find that quantum steering and nonlocality behave similarly in terms of photon number during dynamics. Furthermore, we discover that ECSs with steerability can violate the Bell inequality, and that not every ECS with Bell nonlocality is steerable. In the current work, without the memory stored in the environment, some of the initial states with maximal values of quantum steering, Bell nonlocality, and entanglement can provide a delayed loss of that value during temporal evolution, which is of interest to the current study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号