首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
陈云  蔡厚道 《人工晶体学报》2020,49(12):2287-2291
单层二硫化钼(MoS2)是一种具有优异光电性能的半导体材料,在太阳能能量转换中表现出很大的应用潜力。本文基于AMPS模拟软件,对单层n型MoS2/p型c-Si异质结太阳电池进行了数值模拟与分析。通过模拟优化,n型MoS2的电子亲和能为3.75 eV、掺杂浓度为1018 cm-3,p型c-Si的掺杂浓度为1017 cm-3时,太阳电池能够取得最高22.1%的转换效率。最后模拟了n型MoS2/p型c-Si异质结界面处的界面态对太阳电池性能的影响,发现界面态密度超过1011 cm-2·eV-1时会严重影响太阳电池的光伏性能。  相似文献   

2.
硫化亚锡(SnS)是一种Ⅳ-Ⅵ族层状化合物半导体材料,其禁带宽度与太阳能电池最佳带隙1.5 eV非常接近,并且在可见光范围内光的吸收系数很大(α>104 cm-1),因此SnS是一种很有应用前景的材料。本文利用太阳能电池模拟软件wxAMPS模拟了MoS2/SnS异质结太阳能电池,主要研究SnS吸收层的厚度、掺杂浓度和缺陷态等因素对太阳能电池性能的影响。研究发现:SnS吸收层最佳厚度为2 μm,最佳掺杂浓度为1.0×1015 cm-3;同时高斯缺陷态浓度超过1.0×1015 cm-3时,电池各项性能参数随着浓度的增加而减小,而带尾缺陷态超过1.0×1019 cm-3·eV-1时,电池性能才开始下降;其中界面缺陷态对太阳能电池影响比较严重,界面缺陷态浓度超过1.0×1012 cm-2时,开路电压、短路电流、填充因子和转换效率迅速下降。另外,通过模拟获得的转换效率高达24.87%,开路电压为0.88 V,短路电流为33.4 mA/cm2。由此可知,MoS2/SnS异质结太阳能电池是一种很有发展潜力的光伏器件结构。  相似文献   

3.
设计了单层MoS2 (n)/a-Si(i)/c-Si(p)/μc-Si(p+)异质结太阳能电池结构,采用AFORS-HET模拟软件模拟了背场层的带隙、掺杂浓度和缺陷密度等参数对开路电压、短路电流、填充因子和转化效率的影响.结果 显示,背场层带隙在1.5 ~1.7 eV之间,背场层的掺杂浓度大于1×1018 cm-3时,该结构的太阳能电池有比较稳定的表现.缺陷密度增加时,太阳能电池效率随着缺陷密度的对数线性减小,当控制缺陷密度在1011 cm-3以下时,可以获得大于24.10;的转化效率,缺陷密度为109 cm-3时,可以获得最高29.08;的转换效率.最后研究了背场层对该结构太阳能电池的作用,结果显示有效控制缺陷密度时,背场层的添加对电池效率的提升很明显.  相似文献   

4.
运用模拟软件AFORS-HET对TCO/a-Si∶ H(n)/a-Si∶ H(i)/c-Si(p)/Ag结构的异质结(HIT)太阳电池进行仿真,分析其光伏输出特性随发射层掺杂浓度、晶硅衬底掺杂浓度、透明导电氧化物薄膜(TCO)的选择以及TCO功函数的变化规律.结果显示,当发射层掺杂浓度大于1.0×1020 cm-3,晶硅衬底掺杂浓度大于1.2×1016 cm3,以ZnO为TCO层且ZnO的功函数低于4.4 eV时,电池的开路电压、短路电流密度、填充因子及电池转换效率达到最优值,光电转换效率最高达到19.18;.  相似文献   

5.
本文对70 nm超薄多晶硅的掺杂工艺、钝化性能及光伏特性进行了研究。确定了70 nm超薄多晶硅的掺杂工艺,研究表明当离子注入剂量为3.2×1015 cm-3,在855 ℃退火20 min时,70 nm超薄多晶硅的钝化性能可以达到与常规120 nm多晶硅相当的水平,且70 nm多晶硅的表面掺杂浓度达到5.6×1020 atoms/cm3,远高于120 nm掺杂多晶硅的表面掺杂浓度(2.5×1020 atoms/cm3)。基于70 nm超薄多晶硅厚度减薄和高表面浓度掺杂的特点,较低的寄生吸收和强场钝化效应使得在大尺寸(6英寸)直拉单晶硅片上加工的N型TOPCon太阳能电池的光电转换效率得到明显提升,主要电性能参数表现为:电流Isc升高20 mA,串联电阻Rs降低,填充因子FF增加0.3%,光电转换效率升高0.13%。  相似文献   

6.
夏士兴  周龙  许聪  魏磊  丁宇  张丰发 《人工晶体学报》2022,51(11):1845-1850
本文以CVD ZnSe晶片为基质材料,以FeSe粉末为掺杂物,采用双温区热扩散掺杂技术获得了尺寸为Ø22 mm×4 mm的Fe2+∶ZnSe激光晶体。通过二次离子质谱(SIMS)测试该晶体样品表面铁离子浓度为3.43×1018 cm-3,并通过X射线光电子能谱(XPS)分析了晶体样品中铁元素的离子价态。采用UV/Vis/NIR分光光度计和傅里叶红外光谱仪测试了Fe2+∶ZnSe激光晶体的透过谱图。测试结果显示,在3.0 μm处出现了明显的Fe2+吸收峰,峰值透过率为5.5%。以波长为2.93 μm的Cr, Er∶YAG激光器为泵浦源,温度77 K时抽运尺寸10 mm×10 mm×4 mm的 Fe2+∶ZnSe晶体,获得了能量为191 mJ、中心波长4.04 μm的中红外激光输出,光光转换效率13.84%。  相似文献   

7.
为提升隧穿氧化层钝化接触(TOPCon)电池光电转换效率,本文通过高温扩散在n型TOPCon电池正面制作p型隧穿氧化层钝化接触结构,提升发射极钝化性能,减少正面金属复合。本文研究了不同沉积时间、推进温度、推进时间等工艺参数对实验样品钝化性能及掺杂曲线的影响。实验结果表明,当沉积时间为1 500 s,推进温度为920℃,推进时间为20 min时,掺硼多晶硅层可获得较优的钝化性能及掺杂浓度,其中样品多晶硅层硼掺杂浓度达到1.40×1020 cm-3,隐开路电压(iVoc)大于720.0 mV。依据该参数制备的TOPCon电池光电转换效率可达23.89%,对应的短路电流密度为39.36 mA/cm2,开路电压(Voc)达到726.4 mV,填充因子(FF)为83.54%。  相似文献   

8.
多元硫化物Cd0.5Zn0.5S和氧化亚铜Cu2O载流子迁移率较大,且其制作工艺相对于传统的电子传输层和空穴传输层更为简单,因此这两种材料在钙钛矿太阳电池中具有很好的应用潜力。本文利用SCAPS-1D软件对以Cu2O和Cd0.5Zn0.5S为传输层、以铅基卤化物钙钛矿为吸收层的太阳电池进行模拟,主要研究了该器件的材料厚度、掺杂浓度、禁带宽度等因素对太阳电池性能的影响。结果表明:当光吸收层(CH3NH3PbI3)厚度开始增大时电池性能逐渐提高,但是增大到一定厚度时,电池性能下降,光吸收层的最佳厚度为400 nm;当光吸收层的缺陷态密度小于1.0×1014 cm-3时,缺陷态密度对电池性能的影响比较小;此外,铅基卤化物钙钛矿的禁带宽度对电池性能有重要影响,最佳禁带宽度为1.5 eV左右。通过模拟,得到了优化后的性能参数为:开路电压为1.010 V,短路电流密度为31.30 mA/cm2,填充因子为80.01%,电池转换效率为25.20%。因此,Cu2O/CH3 NH3PbI3/Cd0.5Zn0.5S钙钛矿太阳电池是一种很有发展潜力的光伏器件。  相似文献   

9.
13N超高纯锗单晶是制作超高纯锗探测器的核心材料。本文通过还原法获得还原锗锭,再由水平区熔法提纯获得12N高纯锗多晶,最后由直拉法生长得到13N超高纯锗单晶。通过低温霍尔测试、位错密度检测、深能级瞬态谱(DLTS)测试对13N超高纯锗单晶性能进行分析。低温霍尔测试结果显示,晶体头部截面平均迁移率为4.515×104 cm2·V-1·s-1,载流子浓度为1.176×1010 cm-3,导电类型为p型,位错密度为2 256 cm-2;尾部截面平均迁移率为4.620×104 cm2·V-1·s-1,载流子浓度为1.007×1010 cm-3,导电类型为p型,位错密度为2 589 cm-2。晶体深能级杂质浓度为1.843×109 cm-3。以上结果...  相似文献   

10.
碲镉汞(MCT)自从问世以来一直是高端红外(IR)探测器领域的首选材料,分子束外延碲镉汞技术具有低成本异质外延、材料能带精准调控、原位成结等优势,是第三代红外焦平面陈列(FPA)器件研制的重要手段。本文报道了昆明物理研究所分子束外延(MBE)MCT薄膜技术进展,包括材料结构、晶体质量、表面缺陷、材料均匀性、掺杂浓度等参数优化控制的研究结果。异质衬底、碲锌镉衬底上MCT薄膜尺寸分别为4英寸(10.16 cm)及2.5 cm×2.5 cm,材料EPD值分别在1×106 cm-2附近及(3~30)×104 cm-2范围,表面宏观缺陷密度分别在30 cm-2附近及100~300 cm-2范围,薄膜质量与国内外先进水平相当。采用分子束外延MCT薄膜实现了2 048×2 048中波红外(MWIR)、2 048×2 048短波甚高分辨率红外(SWIR)焦平面、640×512中短双色红外(S-MWIR)、320×256中中双色红外(M-MWIR)FPA探测器的研制和验证。  相似文献   

11.
肖友鹏 《人工晶体学报》2022,51(7):1270-1274
硫化亚锗(GeSe)具有合适的禁带宽度、高的吸收系数和高的载流子迁移率等优异的光电特性,且组分简单、低毒和储量丰富,特别适合作为光伏吸收材料。本文基于新型太阳电池吸收层材料GeSe构筑了结构为金属栅线/AZO/i-ZnO/CdS/GeSe/Mo/玻璃的薄膜太阳电池,分别模拟分析了缓冲层和吸收层的厚度、掺杂浓度,以及吸收层体缺陷密度对器件性能的影响。经过优化CdS缓冲层厚度和掺杂浓度以及GeSe吸收层厚度和掺杂浓度,器件获得高达27.59%的转换效率。这些结果表明GeSe基薄膜太阳电池有成为高效光伏器件的潜力。  相似文献   

12.
AlGaAs/GaAs heterostructures were grown by chemical beam epitaxy using triethylgallium, triisobutylaluminium and pure arsine in flow control mode with hydrogen as carrier gas. For substrate temperatures of 580°C and V/III ratios of 10, high quality AlGaAs layers are obtained; heterostructures show abrupt and smooth interfaces. Modulation doping with silicon evaporated from a conventional effusion cell gives two-dimensional electron gases with carrier densities up to 1×1012 cm-2. Mobilities of 70000 cm2/V·s are obtained at 77 K for carrier densities of 4×1011 cm-2. The lateral homogeneity of the heterostructures in layer thickness, composition and doping level is excellent. Perfect morphology with defect densities of about 100 cm-2 is observed. High electron mobility transistors (gate length 0.3 nm) fabricated from quantum well structures show a transconductance of about 380 mS/mm.  相似文献   

13.
全无机钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和高的环境稳定性而被广大学者关注,但Pb元素的使用对环境危害较大限制了其进一步应用。尽管科研人员目前在努力寻找一种危害较小的元素替代铅,但无铅钙钛矿仍然比含铅钙钛矿更易分解,性能也更低。本文采用Sn部分取代Pb制备得到全无机锡铅混合钙钛矿薄膜,并通过添加一定量的水杨酸从而抑制Sn2+氧化为Sn4+,达到稳定相态提升电池光电转换效率的目的。结果表明随着水杨酸的添加量由2 mg·mL-1增加至6 mg·mL-1,器件的光电转换效率先增大后降低。通过SEM、XRD、XPS等测试结果发现,当添加量为4 mg·mL-1时,薄膜相稳定性最好,与不添加水杨酸的器件相比,其短路电流密度(Jsc)从14.7 mA·cm-2显著提高至15.1 mA·cm-2,光电转换效率由5.8%提高至6.5%。此外,最优器件在空气环境中存放5 d后,初始光电转换效率仍可保持原有效率的50%,进一步表明水杨酸的添加对锡铅混合钙钛矿相稳定性的提升具有一定的促进作用。  相似文献   

14.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。  相似文献   

15.
由于在染料敏化太阳能电池(dye-sensitized solar cell, DSSC)中存在染料弛豫、半导体薄膜中电子与氧化态染料分子发生反应和电子在电解质中与氧化态离子复合等不利反应,利用一个更完善的DSSC载流子传输模型对电池的光电性能进行模拟就显得非常重要。为此,本文基于由多重俘获理论建立的DSSC中的包括电子、染料阳离子、碘化物和三碘化物在内的载流子传输模型,数值模拟得到了不同TiO2薄膜厚度、不同入射光强度与不同染料分子吸收系数下DSSC的J-V曲线。结果表明,随着TiO2薄膜厚度的增加,太阳能电池的短路电流密度增大,开路电压减小,光电转换效率先增大后减小。当DSSC的TiO2薄膜厚度为20 μm时,光电转换效率达到最大值7.41%,同时光电转换效率随入射光强度与染料分子吸收系数的增大均有一定程度提高,其中在吸收系数为4 500 cm-1时,光电转换效率为6.73%。以上结果可以为改进DSSC的光电性能提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号