首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

2.
《中国颗粒学报》2005,3(1-2):26
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis has been paid to the negative impacts of bubbles, such as gas bypassing through bubbles, poor bubble-to-dense phase heat & mass transfer, bubble-induced large pressure fluctuations, process instabilities, catalyst attrition and equipment erosion, and high entrainment of particles induced by erupting bubbles at the bed surface. However, it should be noted that bubble motion and gas circulation through bubbles, together with the motion of particles in bubble wakes and clouds, contribute to good gas and solids mixing. The formation of clusters can be attributed to the movement of trailing particles into the low-pressure wake region of leading particles or clusters. On one hand, the existence of down-flowing clusters induces strong solid back-mixing and non-uniform radial distributions of particle velocities and holdups, which is undesirable for chemical reactions. On the other hand, the formation of clusters creates high solids holdups in the riser by inducing internal solids circulations, which are usually beneficial for increasing concentrations of solid catalysts or solid reactants.Wall effects have widely been blamed for complicating the scale-up and design of fluidized-bed reactors. The decrease in wall friction with increasing the column diameter can significantly change the flow patterns and other important characteristics even under identical operating conditions with the same gas and particles. However, internals, which can be considered as a special wall, have been used to improve the fluidized bed reactor performance.Generally, desirable and undesirable dual characteristics of interaction between particles and fluid are one of the important natures of multiphase flow. It is shown that there exists a critical balance between those positive and negative impacts. Good fluidization quality can always be achieved with a proper choice of right combinations of particle size and size distribution, bubble size and wall design to alleviate the negative impacts.  相似文献   

3.
A new type of liquid–solid fluidized bed, named circulating conventional fluidized bed (CCFB) which operates below particle terminal velocity was proposed and experimentally studied. The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D. and 4.5 m in height with five different types of particles. Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity. The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates. The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions. The effect of particle properties and operating conditions on bed behavior was investigated as well. Results show that particles with higher terminal velocity have higher average solids holdup.  相似文献   

4.
The heat transfer characteristics around a single horizontal heated tube immersed in air fluidized bed was investigated, to clarify the mechanism of heat transfer in a fluidized bed heat exchanger. The local heat transfer coefficient around the tube was measured at various fluidization velocities and five different solid particles. The experimental values of the local heat transfer coefficient at the minimum fluidization velocity condition were correlated with the particle size in two empirical equations. The predicted results were in good agreement with the experiment data.  相似文献   

5.
Flow regime diagrams for gas-solid fluidization and upward transport   总被引:9,自引:0,他引:9  
Flow regime maps are presented for gas-solids fluidized beds and gas-solids upward transport lines. For conventional gas solids fluidization, the flow regimes include the fixed bed, bubbling fluidization, slugging fluidization and turbulent fluidization. For gas solids vertical transport operation, solids flux must be incorporated in the flow regime diagrams. The flow regimes then include dilute-phase transport, fast fluidization or turbulent flow, slug/bubbly flow, bubble-free dense-phase flow and packed bed flow. In practical circulating fluidized beds and transport risers, operation below the fast fluidization regime is commonly impossible due to equipment limitations. Practical flow regime maps are proposed with the flow regimes, including homogeneous dilute-phase flow, core-annular dilute-phase flow (where there are appreciable lateral gradients but small axial gradients) and fast fluidization (where there are both lateral and axial gradients). The boundary between fast fluidization and dilute-phase pneumatic transport is set by the type A choking velocity, at which the uniform suspension collapses and particles start to accumulate in the bottom region of the transport line, while the mechanism of transition from fast fluidization to dense-phase flow depends on the column and particle diameters.  相似文献   

6.
An innovative horizontal swirling fluidized bed (HSFB) with a rectangular baffle in the center of an air distributor and three layers of horizontal secondary air nozzles located at each corner of fluidized bed was developed. Experiments on heat transfer characteristics were conducted in a cold HSFB test model. Heat transfer coefficients between immersed tubes and bed materials in the HSBF were measured with the help of a fast response heat transfer probe. The influences of fluidization velocity, particle size of bed materials, measurement height, probe orientation, and secondary air injection, etc. on heat transfer coefficients were intensively investigated. Test results indicated that heat transfer coefficients increase with fluidization velocity, and reach their maximum values at 1.5-3 times of the minimum fluidization velocity. Heat transfer coefficients are variated along the circumference of the probe, and heat transfer coefficients on the leeward side of the probe are larger than that on the windward side of the probe. Heat transfer coefficients decrease with increasing of measurement height; heat transfer coefficients of the longitudinal probe are larger than that of the transverse probe. The proper secondary air injection and particle size of bed materials can generate a preferred hydrodynamics in the dense zone and enhance heat transfer in a HSFB.  相似文献   

7.
A novel gas fluidized-bed heat exchanger with a very small static bed height has been developed for a heat-exchanging system using a low-pressure fan. This fluidized bed is composed of a multislit distributor, a single row of 8 mm diameter tubes, and glass beads 48–195 μm in diameter. The measured performance of heat transfer is excellent and that of fluidization is satisfactory, in spite of the static bed height being as small as 13 mm. In the best case, the test fluidized bed exhibited a heat transfer performance comparable to that of a conventional fluidized bed with a perforated plate distributor and a static bed height of 150 mm, and showed one-fourteenth the pressure loss.  相似文献   

8.
A commonly used method to dry fine solid particles is drying in a fluidized bed. This paper presents the optimization problem of fluidized drying of fine solids. A drying process proceeding in a three-stage cascade of fluidized cross-current dryers was considered. Solid flows from stage to stage, and fresh gas is introduced to each stage of the cascade. The hydrodynamics of bubble fluidized bed and kinetics of heat and mass transfer are taken into account. The bed hydrodynamics is described by a two-phase model. The drying process considered proceeds in the second period of drying. To optimize this problem a generalized version of a discrete algorithm with constant Hamiltonian was used. The optimization procedure is presented in the paper. In optimization calculations, gas parameters (temperature, humidity and flow rate) minimizing total process cost are sought. The results of calculation are presented as graphs. The results obtained and the conclusions drawn are discussed.  相似文献   

9.
The present paper describes the statistical modeling and optimization of a multistage gas-solid fluidized bed reactor for the control of hazardous pollutants in flue gas.In this work,we study the hydrodynamics of the pressure drop and minimum fluidization velocity.The hydrodynamics of a three-stage fluidized bed are then compared with those for a single-stage unit.It is observed that the total pressure drop over all stages of the three-stage fluidized bed is less than that of an identical single-stage system.However,the minimum fluidization velocity is higher in the single-stage unit.Under identical conditions,the minimum fluidization velocity is highest in the top bed,and lowest in the bottom bed.This signifies that the behavior of solids changes from a well-mixed flow to a plug-flow,with intermediate behavior in the middle bed.  相似文献   

10.
Vibrational energy was introduced to a dense medium gas–solid fluidized bed to improve the separation performance of 1–6 mm fine low-rank coal. The setup was termed a vibrated gas–solid fluidized bed and could provide a stable fluidization state and uniform density distribution for dry coal beneficiation by the transfer of vibrational energy and the interaction between vibrations and the gas phase. Favorable segregation of the ash content of the 1–6-mm-sized lignite samples is achieved under suitable operating conditions. Higher yields of cleaning coal were acquired when the ash content was reduced. The probable error values were 0.065 and 0.055 at separating densities of 1.68 and 1.75 g/cm3 for the 1–3- and 3–6-mm-sized lignite samples, respectively. Effective beneficiation of 1–6-mm-sized fine lignite could be achieved using the vibrated gas–solid fluidized bed, which provides an alternative technique for the separation of fine low-rank coal in arid areas.  相似文献   

11.
Adsorption using solid sorbents has the potential to complement or replace current absorption technology, because of its low energy requirements. Among the commercially available adsorbent materials, attention is focused on activated carbons because they are easily regenerable by reason of their low heat of adsorption. These sorbents are generally available in the form of fine powders. Sound-assisted fluidization can process large amounts of fine powders, promoting and enhancing CO2 capture on fine sorbents, because it maximizes gas–solid contact. Temperature swing adsorption (TSA), consisting of inducing sorbent regeneration and CO2 recovery by appropriate temperature increase and gas purge, is one of the most promising techniques. This study investigates the CO2 desorption process by TSA in a sound-assisted fluidized bed of fine activated carbon. Desorption tests were performed under ordinary and sound-assisted fluidization conditions to assess the capability of sound to promote and enhance the desorption efficiency in terms of CO2 recovery, CO2 purity, and desorption time. The results show that the application of sound results in higher desorption rates, CO2 recovery and purity. Regular and stable desorption profiles can be obtained under sound-assisted fluidization conditions. This stability makes it possible to successfully realize a cyclic adsorption/desorption process.  相似文献   

12.
Simulations of the gas fluidization of a cohesive powder were performed using the Stokesian Dynamics method and an agglomeration-deagglomeration model to investigate methods of improving the fluidizability of fine powders. Three techniques (a) high gas velocity (b) vibration-assisted fluidization and (c) tapered fluidizer were used in the simulations which provided detailed information on the bed microscopy such as the motion of 1 O0 particles in a fluidizing vessel along with the formation and destruction of cohesive bonds dudng collisions. While all three techniques were found to effectively improve the fluidizability of a strongly cohesive powder, we suggest a combination of high velocity fluidization assisted by extemal vibration of the fluidized bed to minimize entrainment of particles.  相似文献   

13.
This work presents an experimental study of the heat transfer in a vibrofluidized bed and an investigation of the vibrofluidized bed coating process of thin copper plates.At superficial velocities close to that of minimum fluidization the heat transfer coefficient increases with the air flow rate and also with the immersion depth in the bed. It is independent of the initial object temperature.For different experimental conditions the obtained vibrofluidized bed coating thicknesses increase with the initial object temperature and immersion time. When compared with the theoretical predictions calculated for a regular fluidized bed, they show a good agreement. The temperature-time histories of the coated object are also recorded and compared to theoretical results.  相似文献   

14.
Hongzhong Li   《Particuology》2010,8(6):631-633
Along with the fast development of computer technology and measurement techniques, fundamental research on fluidization is faced with both new challenges and opportunities. Among others, great attention should be focused on the meso-scale structure of fluidized beds, to study the quantitative prediction theory and optimum control method for the meso-scale structure of fluidized beds, and to establish the modeling of the relationship between meso-scale structure and momentum transfer, heat transfer, mass transfer, and chemical reaction. These efforts, combined with advanced computer simulation, are expected to solve difficult problems in optimum control and scale-up of fluidized bed processes and equipment.  相似文献   

15.
A three phase mathematical model of simultaneous heat and mass transfer of a batch operation for a fluidized bed is presented. The three phases are a solid free bubble, emulsion and solid phases. The model employs an elaborate five equations porosity model. Various correlations for the minimum fluidization parameters are surveyed and compared with the adequate one is being adopted in the model. The governing equations together with the boundary and initial conditions are presented for a cyclic operation of the bed. These are numerically solved for a test case where the bed is charged with silica gel particles to dehumidify a process air stream. Thus the bed works in an air dehumidification mode/bed regeneration mode cyclic operation with matching conditions.Results for the bed operation are presented as the temperature and humidity ratio variations for the test case. The results indicate the ability of the developed model to provide the␣required data for the concerned batch operated fluidized bed. Received on 11 May 1998  相似文献   

16.
Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance. In the process of fluidization, electrostatic interaction between particles will obviously accelerate particle agglomerate formation, which consequently reduces the fluidization performance. Pulsed gas flow injection is an efficient method to enhance particle mixing, thereby weakening the occurrence of particle agglomerate. In this study, the two-dimensional hybrid pulsed fluidized bed is established. The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects. Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition. Results show that in the presence of static electricity, the bubble generation position is lower, which is conducive to the particle flow. Pulsed gas flow can increase the particle velocity and improve the diffusion ability. The bubble generation time is different at different frequencies, and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics. Different gas flow ratios have significant impacts on the particle movement amplitude. When the pulse gas flow accounts for a large ratio, the particle agglomerate tends to be larger. Therefore, in order to improve the fluidization effect, the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.  相似文献   

17.
This paper reports on the hydrodynamics of a bubble-induced inverse fluidized bed reactor, using a nanobubble tray gas distributor, where solid particles are fluidized only by an upward gas flow. Increasing the gas velocity, the fixed layer of particles initially packed at the top of the liquid starts to move downwards, due to the rise of bubbles in this system, and then gradually expands downwards until fully suspended. The axial local pressure drops and standard deviation were examined to delineate the flow regime comprehensively under different superficial gas velocities. Four flow regimes (fixed bed regime, initial fluidization regime, expanded regime, and post-homogeneous regime) were observed and three transitional gas velocities (the initial fluidization velocity, minimum fluidization velocity, and homogeneous fluidization velocity) were identified to demarcate the flow regime. Three correlations were developed for the three transitional velocities. As the fine bubbles generated from the nanobubble tray gas distributor are well distributed in the entire column, the bed expansion process of the particles is relatively steady.  相似文献   

18.
The processing of fine-grained particles with diameters between 1 and 10 microns is difficult due to strong van-der-Waals attraction forces. In order to improve the handling properties, the fine-grained particles, i.e. host-particles,are coated with various nanoparticles, i.e. guest-particles. The mixing of fine-grained powders is influenced by particle-particle interactions. If these forces are distinctively used, both interactive and ordered mixtures can be produced.These particle mixtures consist of composite-particles that have new physical properties. These modified properties d epend strongly on the coating process, the diameter- and mass-relationship of the guest- and the host-particles. The properties of the composite-particles can systematically be adjusted to the requirements of industrial applications. For example, a laboratory bubbling fluidized bed can be used to describe the conveying behavior of the functionalized host-particles. Applications for the functionalized particles are in the pharmaceutical and the powder coating industries,e.g. enhanced dry powder inhalers and thin lacquer films. The present research compares three different mixing/coating processes. The composite-particles are characterized by TEM, SEM and with their fluidization characteristics. The coating process itself is monitored by the electrostatic charge of the particles.  相似文献   

19.
Some hydrodynamic aspects of 3-phase inverse fluidized bed   总被引:2,自引:0,他引:2  
Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities. The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.  相似文献   

20.
Continuous segregation of a binary mixture of heterogeneous (different density) solids is carried out in a gas–solid fluidized bed. We investigate how gas velocity, solids feed rate, flotsam feed composition, bottom discharge pipe diameter, and minimum fluidization velocity ratio of the flotsam to jetsam particles influence the solids holdup, separation factor, and product quality (flotsam purity at the top outlet). The results are interpreted in terms of solids holdup information. The results indicate that the separation factor decreases when the gas velocity, bottom discharge pipe diameter, flotsam feed composition, or the minimum fluidization velocity ratio increase, while the separation factor increases as the solids feed rate increases. The product quality decreases when the gas velocity, solids feed rate, or minimum fluidization velocity ratio increase, while the product quality increases as the bottom discharge pipe diameter or flotsam feed composition increase. Correlations for predicting the separation factor and product quality are proposed using a logistic model for individual flotsam feed compositions, which satisfactorily compares with the present experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号