首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Continuous segregation of binary heterogeneous solids (different density mixtures) is carried out in a gas–solid fluidized bed to study the effects of gas velocity, solids feed rate, feed composition and density difference of solids on the separation factor (recovery of flotsam at top outlet) and the quality of the product (purity of flotsam at top outlet) in a continuous fast-fluidized bed. The holdup of the bed material is obtained in each experimental run. It is observed that the separation factor decreases with increase in solids feed rate or density difference of solids, and increases with gas velocity or proportion of flotsam in the feed. The quality of the product decreases with increase in gas velocity or solids flow rate, and increases with feed composition or density difference of solids. The experimental results show that the separation factor and the quality of the product are more sensitive to gas velocity than to other operating parameters. Empirical correlations for predicting the separation factor and quality of the product are proposed based on the Richards model for individual flotsam mass fraction in the feed, and the predictions agree satisfactorily with the present experimental data.  相似文献   

2.
Some hydrodynamic aspects of 3-phase inverse fluidized bed   总被引:2,自引:0,他引:2  
Hydrodynamics of 3-phase inverse fluidized bed is studied experimentally using low density particles for different liquid and gas velocities. The hydrodynamic characteristics studied include pressure drop, minimum liquid and gas fluidization velocities and phase holdups. The minimum liquid fluidization velocity determined using the bed pressure gradient, decreases with increase in gas velocity. The axial profiles of phase holdups shows that the liquid holdup increases along the bed height, whereas the solid holdup decreases down the bed. However, the gas holdup is almost uniform in the bed.  相似文献   

3.
Fluidization data acquired, processed and printed out inone integral instrument: pressure drop versus gas velocity fluctuating height versus gas velocity minimum fluidization velocity quality of fluidization expressed in terms of bed collapsing curves: rate of bubble escape rate of particulate sedimentation in dense phase rate of consolidation of packed solids printout of dimensionless subsidence time  相似文献   

4.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

5.
The local solids holdup and local particle velocity in a Countercurrent Liquid-upward and Solids-downward Fluidized Bed (CCLSFB) were investigated in details using optical fiber probes with two different models in a Plexiglas column of 1.5 m in height and 7.0 cm in inner diameter. A new flow regime map including fluidized bed, transition, and flooding regimes was established. The axial solids holdup distribution is almost uniform at low liquid velocity and/or solids flowrate and becomes less uniform with higher solids holdup at the top of the column after the operating liquid velocity is reaching the flooding velocity. The radial solids holdup profile is also nearly flat with a slightly lower solids holdup in the near-wall region at low liquid velocity and solids flowrate but becomes nonuniform as the operating liquid velocity approaches the flooding velocity. Two equations were also proposed to correlate radial local solids holdups. The descending particle velocity in CCLSFB increases with the decrease of the liquid velocity and the increase of the solids flowrate. A generally uniform particle velocity distribution was found in the axial direction, as well as in the radial direction except for a small decrease near the wall. These results on the local solids flow structure would provide basic information and theoretical supports for the design and industrial application of CCLSFB.  相似文献   

6.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

7.
The present paper describes the statistical modeling and optimization of a multistage gas-solid fluidized bed reactor for the control of hazardous pollutants in flue gas.In this work,we study the hydrodynamics of the pressure drop and minimum fluidization velocity.The hydrodynamics of a three-stage fluidized bed are then compared with those for a single-stage unit.It is observed that the total pressure drop over all stages of the three-stage fluidized bed is less than that of an identical single-stage system.However,the minimum fluidization velocity is higher in the single-stage unit.Under identical conditions,the minimum fluidization velocity is highest in the top bed,and lowest in the bottom bed.This signifies that the behavior of solids changes from a well-mixed flow to a plug-flow,with intermediate behavior in the middle bed.  相似文献   

8.
A new type of liquid–solid fluidized bed, named circulating conventional fluidized bed (CCFB) which operates below particle terminal velocity was proposed and experimentally studied. The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D. and 4.5 m in height with five different types of particles. Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity. The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates. The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions. The effect of particle properties and operating conditions on bed behavior was investigated as well. Results show that particles with higher terminal velocity have higher average solids holdup.  相似文献   

9.
Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.  相似文献   

10.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


11.
Flow regime diagrams for gas-solid fluidization and upward transport   总被引:9,自引:0,他引:9  
Flow regime maps are presented for gas-solids fluidized beds and gas-solids upward transport lines. For conventional gas solids fluidization, the flow regimes include the fixed bed, bubbling fluidization, slugging fluidization and turbulent fluidization. For gas solids vertical transport operation, solids flux must be incorporated in the flow regime diagrams. The flow regimes then include dilute-phase transport, fast fluidization or turbulent flow, slug/bubbly flow, bubble-free dense-phase flow and packed bed flow. In practical circulating fluidized beds and transport risers, operation below the fast fluidization regime is commonly impossible due to equipment limitations. Practical flow regime maps are proposed with the flow regimes, including homogeneous dilute-phase flow, core-annular dilute-phase flow (where there are appreciable lateral gradients but small axial gradients) and fast fluidization (where there are both lateral and axial gradients). The boundary between fast fluidization and dilute-phase pneumatic transport is set by the type A choking velocity, at which the uniform suspension collapses and particles start to accumulate in the bottom region of the transport line, while the mechanism of transition from fast fluidization to dense-phase flow depends on the column and particle diameters.  相似文献   

12.
Types of choking in vertical pneumatic systems   总被引:4,自引:0,他引:4  
Choking is examined in terms of its definitions. Three choking initiation mechanisms are identified: type A (accumulative) choking occurs when solids start to accumulate at the bottom of the conveyor as the saturation gas carrying capacity is reached; type B (blower-/standpipe-induced) choking results from instabilities due to gas blower-conveyor or solids feeder-conveyor interactions where there is insufficient pressure or too limited solids feed capacity to provide the needed solids flow; and type C (classical) choking corresponds to a transition to severe slugging. Approaches for predicting the onset of each of these type of choking are recommended. Implications for regime transitions in fast fluidization are also identified.  相似文献   

13.
Most gas wells produce some amount of liquid. The liquid is either condensate or water. At high rates, the gas is able to entrain liquid to the surface; however, as gas well depletes, the liquid drops back in a gas well (called liquid loading) creating a back pressure on the reservoir formation. Addition of surfactants to the well to remove liquid is one of the common methods used in gas wells. Liquid loading in vertical gas wells with and without surfactant application was investigated in this study. Anionic, two types of amphoteric (amphoteric I and amphoteric II), sulphonate and cationic surfactants were tested in 2-inch and 4-inch 40-feet vertical pipes. Pressure gradient and liquid holdup are measured. Visual observation with a high speed camera was used to gain insight into the direction of foam flow in intermittent flow and foam film flow under annular flow conditions.Liquid loading is initiated when the liquid film attached to the wall in annular flow starts flowing downwards. Introduction of foam causes the gas velocity at which film reversal occurs to decrease; this shift increases with increasing surfactant concentration and it is more pronounced in 2-inch pipe than in 4-inch pipe. That is, the benefit of surfactants is much more pronounced in 2-inch pipe than in 4-inch pipe. The reason for postponement of liquid loading is reduction in the liquid holdup at low gas velocities which reduces the liquid holdup in foam flow compared to air-water flow. However, at higher gas velocities, the pressure drop in 2-inch compared to 4-inch pipe increases rapidly as the surfactant concentration increases. The selection of optimum concentration of the surfactant is a balance between the reductions in the gas velocity at which liquid loading occurs compared to increase in the frictional loss as the concentration increases. We provide guidelines about the selection of the surfactant concentration.Visual observations using high speed camera show differences in the behavior under foam flow conditions. Unlike air-water flow, the liquid film attached to the wall is replaced by thick foam capturing the gas bubbles. The type of roll waves which carry the liquid in 2-inch pipe is different than what was observed in 4-inch pipe. Compared to 4-inch pipe, the roll waves in 2-inch pipe are much thicker. This partly explains the differences in 2-inch versus 4-inch pipe behavior.  相似文献   

14.
Acting as an operating mode of fluidization, the flow characteristics of a countercurrent liquid–solid fluidized bed (CCLSFB) were experimentally investigated using a Plexiglas column of 1.5 m in height. Countercurrent liquid-upward and solid-downward fluidization was achieved under a limited solid flowrate before flooding occurred.The “flooding” phenomena and the flooding velocity were identified by measuring the variations in pressure drop in the axial direction of the column. Two different methods were used to quantify the flooding point that led to the instability of the system. Axial solids holdup profiles were also obtained from the pressure drop data along the column and the influences of device structure and operating conditions on the solids holdup were also studied. Seven types of particles with different diameters and densities were used. An agreement was found between the experimental results and the mathematic prediction derived from the Richardson–Zaki equation on the data of the solids holdup.  相似文献   

15.
Drag-reducing polymers were added to air and water flowing in a stratified configuration in a horizontal 2.54 cm pipe. The interface was covered with large amplitude roll waves, that have been called pseudo-slugs, over a range of flow conditions. The damping of small wavelength waves causes a large decrease in the interfacial stress and, therefore, an increase in the liquid holdup. At superficial gas velocities greater than 4 m/s the transition to slug flow is delayed in that it occurs at larger liquid holdups. This observation is interpreted by assuming that turbulence in slugs is damped. This increases the shedding rate of a slug and, therefore, its stability. The pressure drop can increase or decrease when polymers are added. The increase in holdup is accompanied by an increase in gas velocity, which causes an increase in the pressure drop. The decrease in the interfacial stress has the opposite effect.  相似文献   

16.
A magnetically stabilized fluidized bed (MSFB, φ 500mm x 2100mm) was designed to study dust removal from flue gas. Based on the mechanism of dust removal in a fixed bed, the effects on collection efficiency of magnetic field intensity, ratio of flue gas velocity to minimum fluidization velocity, bed height, and particle average diameter, were investigated. Then feasible methods for MSFB to better remove dust were proposed. Over 95% of dust removal with MSFB can be achieved, when stable fluidization is maintained and when magnetic particles are frequently renewed.  相似文献   

17.
In the processes involving the movement of solid particles, acoustic emissions are caused by particle friction, collision and fluid turbulence. Particle behavior can therefore be monitored and characterized by assessing the acoustic emission signals. Herein, extensive measurements were carried out by microphone at different superficial gas velocities with different particle sizes. Acoustic emission signals were processed using statistical analysis from which the minimum fluidization velocity was determined from the variation of standard deviation, skewness and kurtosis of acoustic emission signals against superficial gas velocity. Initial minimum fluidization velocity, corresponding to onset of fluidization of finer particles in the solids mixture, at which isolated bubbles occur, was also detected by this method. It was shown that the acoustic emission measurement is highly feasible as a practical method for monitoring the hydrodynamics of gas–solid fluidized beds.  相似文献   

18.
Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.  相似文献   

19.
The present study seeks to investigate horizontal bubbly-to-plug and bubbly-to-slug transition flows. The two-phase flow structures and transition mechanisms in these transition flows are studied based on experimental database established using the local four-sensor conductivity probe in a 3.81 cm inner diameter pipe. While slug flow needs to be distinguished from plug flow due to the presence of large number of small bubbles (and thus, large interfacial area concentration), both differences and similarities are observed in the evolution of interfacial structures in bubbly-to-plug and bubbly-to-slug transitions. The bubbly-to-plug transition is studied by decreasing the liquid flow rate at a fixed gas flow rate. It is found that as the liquid flow rate is lowered, bubbles pack near the top wall of the pipe due to the diminished role of turbulent mixing. As the flow rate is lowered further, bubbles begin to coalesce and form the large bubbles characteristic of plug flow. Bubble size increases while bubble velocity decreases as liquid flow rate decreases, and the profile of the bubble velocity changes its shape due to the changing interfacial structure. The bubbly-to-slug transition is investigated by increasing the gas flow rate at a fixed liquid flow rate. In this transition, gas phase becomes more uniformly distributed throughout the cross-section due to the formation of large bubbles and the increasing bubble-induced turbulence. The size of small bubbles decreases while bubble velocity increases as gas flow rate increases. The distributions of bubble size and bubble velocity become more symmetric in this transition. While differences are observed in these two transitions, similarities are also noticed. As bubbly-to-plug or bubbly-to-slug transition occurs, the formation of large elongated bubbles is observed not in the uppermost region of bubble layer, but in a lower region. At the beginning of transitions, relative differences in phase velocities near the top of the pipe cross-section to those near the pipe center become larger for both gas and liquid phases, because more densely packed bubbles introduce more resistance to both phases.  相似文献   

20.
Bottom bed regimes in a circulating fluidized bed boiler   总被引:1,自引:0,他引:1  
This paper extends previous work on the fluidization regimes of the bottom bed of circulating flyidized bed (CFB) boilers. Pressure measurements were performed to obtain the time-average bottom bed voidage and to study the bed pressure fluctuations. The measurements were carried out in a 12 MWth CFB boiler operated at 850°C and also under ambient conditions (40°C). Two bubbling regimes were identified: a “single bubble regime” with large single bubbles present at low fluidization velocities, and, at high fluidization velocities, an “exploding bubble regime” with bubbles often stretching all the way from the air distributor to the surface of the bottom bed. The exploding bubble regime results in a high through-flow of gas, indirectly seen from the low average voidage of the bottom bed, which is similar to that of a stationary fluidized bed boiler, despite the higher gas velocities in the CFB boiler. Methods to determine the fluidization velocity at the transition from the single to the exploding bubble regime are proposed and discussed. The transition velocity increases with an increase in particle size and bed height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号