首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion.  相似文献   

2.
本文以硬模板与软模板结合的双模板方法(十六烷基三甲基溴化铵(CTAB)为介孔模板,聚苯乙烯(PS)球为中空模板),通过自组装制备出有良好分离性和单分散性且具有径向介孔的二氧化硅中空亚微米球.研究表明CTAB、TEOS的用量,催化剂的种类对二氧化硅中空亚微米球的形貌、壁厚、产品纯度等都有很大的影响.在保持其它实验条件不变的情况下,通过分别单独调节CTAB和TEOS的用量或同时调节CTAB和TEOS的用量,得出最佳原料配比是:TEOS/CTAB/NH3/乙醇/水的摩尔比是1:0.27:9.8:304:2955,TEOS/聚苯乙烯球的质量比是4/1.催化剂的种类对中空亚微米球的形貌也有较大影响,当NaOH(浓度为1 mol/L)的用量为0.05—0.10 mL时,生成由小粒子聚集而成的亚微米球;随着NaOH用量增大到0.10—0.20 mL,小粒子逐渐粘合在一起,亚微米球表面逐渐变光滑;进一步增大NaOH用量为0.20—0.30 mL则导致杂质小粒子的出现.在实验结果和文献报道的基础上,讨论并提出了径向有序介孔二氧化硅中空亚微米球的形成机理.  相似文献   

3.
在疏水高分子胶体模板——含氟丙烯酸酯(FA)共聚物乳胶粒中引入能够介导SiO2原位沉积的聚胺催化活性点-甲基丙烯酰氧乙基三甲基氯化铵(DMC),以四甲氧基硅烷(TMOS)为硅源,在环境条件下可控合成了核壳型FA共聚物/SiO2杂化纳米粒子.高温煅烧除去聚合物核质,可得到中空的SiO2纳米粒子,结合FTIR、EDX、TGA以及XPS等表征数据印证了SiO2的沉积主要发生在聚合物模板的表面.进一步考察了反应条件,如聚胺功能单体DMC的浓度、TMOS的浓度以及反应时间对SiO2杂化纳米粒子的形貌与组成的影响.实验结果表明增加DMC或者TMOS的浓度,适当延长反应时间,均可增加SiO2粒子的沉积速率,导致SiO2壳层的厚度增加,并且杂化粒子的形貌由凹陷多褶皱的核壳结构向可动芯结构转变.由于FA共聚物模板的强疏水性,增加有机核层和无机壳层间的不相容排斥,最终导致核壳层间空腔的形成,得到含可动芯的核壳型SiO2杂化粒子.  相似文献   

4.
Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input.  相似文献   

5.
Isothermal crystallization behavior of poly(vinyl alcohol) (PVA) in the presence and absence of silica nanoparticles was systematically investigated using in-situ attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. The content, size, and surface characteristics of silica nanoparticles were considered as main factors affecting the crystallization behavior, and the effect of annealing time and temperature was also examined. First, very low concentrations of silica nanoparticles (less than 0.5 wt%) could accelerate the crystallization process, whereas higher silica loadings reduced the degree of crystallization. In the PVA/silica (0.5 wt%) nanocomposites, 22-nm silica nanoparticles provided the most suitable interparticle space for nucleation and crystal growth. Compared with hydrophobic silica nanoparticles, hydrophilic silica nanoparticles are favorable to achieve higher crystallinity due to the increased chemical affinity in the nanocomposites. The degree of crystallization became higher with increasing annealing time and it was also enhanced in a high-temperature region. When 0.5 wt% of 22-nm silica nanoparticles was used as a nucleating agent for the crystallization of PVA, the crystallinity of nanocomposites was ca. 20% higher than that of pristine PVA.  相似文献   

6.
This paper describes a rapid, simple and one-step method for preparing silica coated gold (Au@SiO2) nanoparticles with fine tunable silica shell thickness and surface functionalization of the prepared particles with different groups. Monodispersed Au nanoparticles with a mean particle size of 16 nm were prepared by citrate reduction method. Silica coating was carried out by mixing the as prepared Au solution, tetraethoxysilane (TEOS) and ammonia followed by microwave (MW) irradiation. Although there are several ways of coating Au nanoparticles with silica in the literature, each of these needs pre-coating step as well as long reaction duration. The present method is especially useful for giving the opportunity to cover the colloidal Au particles with uniform silica shell within very short time and forgoes the use of a silane coupling agent or pre-coating step before silica coating. Au@SiO2 nanoparticles with wide range of silica shell thickness (5-105 nm) were prepared within 5 min of MW irradiation by changing the concentration of TEOS only. The size uniformity and monodispersity were found to be better compared to the particles prepared by conventional methods, which were confirmed by dynamic light scattering and transmission electron microscopic techniques. The prepared Au@SiO2 nanoparticles were further functionalized with amino, carboxylate, alkyl groups to facilitate the rapid translation of the nanoparticles to a wide range of end applications. The functional groups were identified by XPS, and zeta potential measurements.  相似文献   

7.
We demonstrate a facile wet chemical approach for fabricating spherical metal/metal-oxide core@mesoporous silica shell hybrid nanoparticles with different core and shell thicknesses. Vertically aligned mesoporous silica (mSiO(2) ) shells were fabricated over the pre-synthesized spherical SiO(2) nanoparticles through a three-step strategy: 1)?synthesis of core materials, 2)?covering the core with an organic-inorganic composite layer, and 3)?removing the organic template through calcinations in air. The mechanisms of hybrid structure formation are proposed. The multifunctional nature of the hybrid structures could be induced by incorporating guest ions/molecules, such as Ag, Mn, and TiO(2) , into the pores of an mSiO(2) shell. Mn and TiO(2) cluster- incorporated composite structures have been tested to be antioxidizing agents and effective photocatalysts through electron spin resonance, radical scavenging tests, and the photocatalytic degradation of rhodamine B. The possibility of incorporating several hetero-element guest clusters in these mesoporous composite particles makes them highly attractive for multifunctional applications.  相似文献   

8.
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core–shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core–shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 °C for 2.5 h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA–silica hybrid shell. The resulting hybrid silica core–shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core–shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA–silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core–shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.  相似文献   

9.
This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the St?ber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.  相似文献   

10.
采用3-巯基丙基三甲氧基硅烷作为联结剂,成功将单个金纳米粒子包在氧化硅壳中,制得Au@SiO2核壳纳米粒子;该复合纳米粒子形貌呈球形、单分散性较好,金纳米粒子位于氧化硅球的中心,无团聚的金纳米粒子包覆在氧化硅壳中。采用透射电镜(TEM)对样品的形貌进行了表征,通过能量散射X-射线能谱(EDX)分析了目标物的化学成分,并对所得核壳纳米粒子的光谱性质进行了研究。  相似文献   

11.
A facile method of preparing hierarchical hollow silica microspheres containing surface silica nanoparticles (HHSMs) through the sol-gel process of tetraethylorthosilicate employing a quasi-hard template of non-cross-linking poly(4-vinylpyridine) microspheres is proposed. The quasi-hard template contains the inherent catalyst of the basic pyridine group, and a few of the polymer chains can escape from the template matrix into the aqueous phase, which initiates the sol-gel process spontaneously both on the surface of the template used to prepare the hollow silica shell and in the aqueous phase to produce the surface silica nanoparticles. By tuning the weight ratio of the silica precursor to the quasi-hard template, HHSMs with a size of about 180 nm and a shell thickness ranging from 14 to 32 nm and surface silica nanoparticles ranging from 17 to 36 nm are produced initially through the deposition of surface silica nanoparticles onto the silica shell, followed by template removal either by calcination or solvent extraction. The synthesized HHSMs are characterized, and a possible mechanism for the synthesis of HHSMs is proposed.  相似文献   

12.
We demonstrate a facile wet chemical approach for fabricating spherical metal/metal‐oxide core@mesoporous silica shell hybrid nanoparticles with different core and shell thicknesses. Vertically aligned mesoporous silica (mSiO2) shells were fabricated over the pre‐synthesized spherical SiO2 nanoparticles through a three‐step strategy: 1) synthesis of core materials, 2) covering the core with an organic–inorganic composite layer, and 3) removing the organic template through calcinations in air. The mechanisms of hybrid structure formation are proposed. The multifunctional nature of the hybrid structures could be induced by incorporating guest ions/molecules, such as Ag, Mn, and TiO2, into the pores of an mSiO2 shell. Mn and TiO2 cluster‐ incorporated composite structures have been tested to be antioxidizing agents and effective photocatalysts through electron spin resonance, radical scavenging tests, and the photocatalytic degradation of rhodamine B. The possibility of incorporating several hetero‐element guest clusters in these mesoporous composite particles makes them highly attractive for multifunctional applications.  相似文献   

13.
A novel, fast and facile microwave technique has been developed for preparing monodispersed silica coated silver (Ag@SiO(2)) nanoparticles. Without using any other surface coupling agents such as 3-aminopropyltrimethoxysilane (APS) or polymer such as polyvinyl pyrrolidone (PVP), Ag@SiO(2) nanoparticles could be easily prepared by microwave irradiation of a mixture of colloidal silver nanoparticles, tetraethoxysilane (TEOS) and catalyst for only 2 min. The thickness of silica shell could be conveniently controlled in the range of few nanometers (nm) to 80 nm by changing the concentration of TEOS. Transmission electron microscopy (TEM) and UV-visible spectroscopy were employed to characterize the morphology and optical properties of the prepared Ag@SiO(2) nanoparticles, respectively. The prepared Ag@SiO(2) nanoparticles exhibited a change in surface plasmon absorption depending on the silica thickness. Compared to the conventional techniques based on St?ber method, which need 4-24 h for silica coating of Ag nanoparticles, this new technique is capable of synthesizing monodispersed, uniform and single core containing Ag@SiO(2) nanoparticles within very short reaction time. In addition, straightforward surface functionalization of the prepared Ag@SiO(2) nanoparticles with desired functional groups was performed to make the particles useful for many applications. The components of surface functionalized nanoparticles were examined by Fourier transform infrared (FT-IR) spectroscopy, zeta potential measurements and X-ray photoelectron spectroscopy (XPS).  相似文献   

14.
Block copolymers consisting of poly(γ-benzyl L -glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Core shell type nanoparticles of the block copolymers (abbreviated GEG) were prepared by the dialysis method. Under fluorescence spectroscopy measurement, the GEG block copolymers were associated in water to form core shell type nanoparticles as polymeric micelles and the critical micelle concentrations (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed nanoparticles of spherical shapes. From dynamic light scattering (DLS) study, sizes of nanoparticles of GEG-1 and GEG-2 copolymer were 64.3 ± 28.7 nm and 28.9 ± 7.0 nm. The drug-loading contents of GEG-1 and GEG-2 nanoparticles were 15.2 and 8.3 wt %, respectively. These results indicated that the drug-loading contents were dependent on PBLG chain length in the copolymer. Then, the longer the PBLG chain length, the more the drug-loading contents. Release of clonazepam (CNZ) from the nanoparticles was slower in higher loading contents of CNZ than lower loading contents due to the hydrophobic interaction between PBLG core and CNZ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 415–423, 1998  相似文献   

15.
A two-population model based on standard small-angle X-ray scattering (SAXS) equations is verified for the analysis of core-shell structures comprising spherical colloidal particles with particulate shells. First, Monte Carlo simulations of core-shell structures are performed to demonstrate the applicability of the model. Three possible shell packings are considered: ordered silica shells due to either charge-dependent repulsive or size-dependent Lennard-Jones interactions or randomly arranged silica particles. In most cases, the two-population model produces an excellent fit to calculated SAXS patterns for the simulated core-shell structures, together with a good correlation between the fitting parameters and structural parameters used for the simulation. The limits of application are discussed, and then, this two-population model is applied to the analysis of well-defined core-shell vinyl polymer/silica nanocomposite particles, where the shell comprises a monolayer of spherical silica nanoparticles. Comprehensive SAXS analysis of a series of poly(styrene-co-n-butyl acrylate)/silica colloidal nanocomposite particles (prepared by the in situ emulsion copolymerization of styrene and n-butyl acrylate in the presence of a glycerol-functionalized silica sol) allows the overall core-shell particle diameter, the copolymer latex core diameter and polydispersity, the mean silica shell thickness, the mean silica diameter and polydispersity, the volume fractions of the two components, the silica packing density, and the silica shell structure to be obtained. These experimental SAXS results are consistent with electron microscopy, dynamic light scattering, thermogravimetry, helium pycnometry, and BET surface area studies. The high electron density contrast between the (co)polymer and the silica components, together with the relatively low polydispersity of these core-shell nanocomposite particles, makes SAXS ideally suited for the characterization of this system. Moreover, these results can be generalized for other types of core-shell colloidal particles.  相似文献   

16.
An unusual aggregation phenomenon that involves positively charged poly(L-lysine) (PLL) and negatively charged gold nanoparticles (Au NPs) is reported. Discrete, submicrometer-sized spherical aggregates are found to form immediately upon combining a PLL solution with gold sol (diameter approximately 14 nm). These PLL-Au NP assemblies grow in size with time, according to light scattering experiments, which indicates a dynamic flocculation process. Water-filled, silica hollow microspheres (outer diameter approximately microns) are obtained upon the addition of negatively charged SiO2 NPs (diameter approximately 13 nm) to a suspension of the PLL-Au NP assemblies, around which the SiO2 NPs form a shell. Structural analysis through confocal microscopy indicates the PLL (tagged with a fluorescent dye) is located in the interior of the hollow sphere, and mostly within the silica shell wall. The hollow spheres are theorized to form through flocculation, in which the charge-driven aggregation of Au NPs by PLL provides the critical first step in the two-step synthesis process ("flocculation assembly"). The SiO2 shell can be removed and re-formed by decreasing and increasing the suspension pH about the point-of-zero charge of SiO2, respectively.  相似文献   

17.
Electrostatic-assembly metallized nanoparticles network by DNA template   总被引:1,自引:0,他引:1  
Wu A  Cheng W  Li Z  Jiang J  Wang E 《Talanta》2006,68(3):693-699
Eighteen-nanometer gold and 3.5-nm silver colloidal particles closely packed by cetyltrimethylammonium bromide (CTAB) to form its positively charged shell. The DNA network was formed on a mica substrate firstly. Later, CTAB-capped gold or silver colloidal solutions were cast onto DNA network surface. It was found that the gold or silver nanoparticles metallized networks were formed owing to the electrostatic-driven template assembling of positive charge of CTAB-capped gold and silver particles on the negatively charged phosphate groups of DNA molecules by the characterizations of AFM, XPS and UV-vis. This method may provide a novel and simple way to studying nanoparticles assembly conjugating DNA molecules and offer some potential promising applications in nanocatalysis, nanoelectronics, and nanosensor on the basis of the fabricated metal nanoparticles network.  相似文献   

18.
Transparent inorganic‐polymer nanocomposite films are of tremendous current interest inemerging solar coverings including photovoltaic encapsulants and commercial greenhouse plastics, but suffer from significant radiative heat loss. This work provides a new and simple approach for controlling this heat loss by using mesoporous silica/quantum dot nanoparticles in poly(ethylene‐co‐vinyl acetate) (EVA) films. Mesoporous silica shells were grown on CdS‐ZnS quantum dot (QDs) cores using a reverse microemulsion technique, controlling the shell thickness. These mesoporous silica nanoparticles (MSNs) were then melt‐mixed with EVA pellets using a mini twin‐screw extruder and pressed into thin films of concentration variable controlled thickness. The results demonstrate that the experimental MSNs showed improved infrared and thermal wavebands retention in the EVA transparent films compared to commercial silica additives, even at lower concentrations. It was also found MSNs enhanced the quantum yield and photostability of the QDs, providing high visible light transmission and blocking of UV transmission of interest for next generation solar coatings. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 851–859  相似文献   

19.
Nanocharacterization is essential for nanoengineering of new types of core-shell (c-s) nanoparticles, which can be used to design new devices for photonics, electronics, catalysis, medicine, etc. X-ray photoelectron spectroscopy (XPS) has been widely used to study the elemental composition of the c-s nanoparticles. However, the physical and chemical properties of a c-s nanoparticle dramatically depend on the sizes of its core and shell. We therefore propose a general equation for the XPS intensity of a c-s nanoparticle, which is based on an analytical model. With this equation, XPS can now also be used for nanocharacterization of the core and shell sizes of the c-s nanoparticles (with a diameter smaller than or equal to the XPS probing depth of approximately 10 nm). To validate the new equation with experimental XPS data, we first determine the average shell thickness of a group of c-s nanoparticles by comparing the XPS intensity of reference bare cores to that of the c-s nanoparticles. Then we study the growth kinetics of the cores and shells of another group of c-s nanoparticles where the shells are obtained by oxidation.  相似文献   

20.
Breath figure formation was carried out directly on the surface of poly(methylmethacrylate) using a mixture of a good solvent, tetrahydrofuran, and a nonsolvent, water. Direct breath figure formation was coined for this method and a mechanism was proposed to describe the figure formation by the method based on hypothesizes available for the normal breath figure formation. The proposed mechanism is such that the sonication effect, immersion time, and water content on characteristics of the obtained figures can be explained. The figured surface was then made superhydrophobic with a water contact angle of 175° using in situ growing of perfluoro modified silica nanoparticles inside the figure cell by one-pot method. The spherical modified silica nanoparticles were detected being trapped by figure features providing a mechanical entrapment of the low-surface energy nanoparticles. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号