首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The adsorption of fibrinogen on polystyrene latex particles was studied using the concentration depletion method combined with the AFM detection of residual protein after adsorption. Measurements were carried out for a pH range of 3.5-11 and an ionic strength range of 10(-3)-0.15 M NaCl. First, the bulk physicochemical properties of fibrinogen and the latex particle suspension were characterized for this range of pH and ionic strength. The zeta potential and the number of uncompensated (electrokinetic) charges on the protein were determined from microelectrophoretic measurements. It was revealed that fibrinogen molecules exhibited amphoteric characteristics, being on average positively charged for pH <5.8 (isolectric point) and negative otherwise. However, the latex particles did not show any isoelectric point, remaining strongly negative for this pH range. Afterward, systematic measurements of the electrophoretic mobility of fibrinogen-covered latex were carried out as a function of the amount of adsorbed protein, expressed as the surface concentration. A monotonic increase in the electrophoretic mobility (zeta potential) of the latex was observed in all cases, indicating a significant adsorption of fibrinogen on latex for pH below 11. It was also proven that fibrinogen adsorption was irreversible, with the maximum surface concentration varying between 2.5 and 5 × 10(3) μm(-2) (weight concentration of a bare molecule was 1.4 to 2.8 mg m(-2)). These measurements revealed two main adsorption mechanisms of fibrinogen: (i) the unoriented (random) mechanism prevailing for lower ionic strength, where adsorbing molecules significantly penetrate the fuzzy polymeric layer on the latex core and (ii) the side-on adsorption mechanism prevailing for pH > 5.8 and a higher ionic strength of 0.15 M. It was also shown that in the latter case, variations in the zeta potential with the protein coverage could be adequately described in terms of the electrokinetic model, previously formulated for planar substrate adsorption. On the basis of these experimental data, an efficient procedure of preparing fibrinogen-covered latex particles of controlled monolayer structure and coverage was envisaged.  相似文献   

2.
Adsorption of the cationic salivary proteins lactoferrin, lactoperoxidase, lysozyme and histatin 5 to pure (hydrophilic) and methylated (hydrophobized) silica surfaces was investigated by in situ ellipsometry. Effects of concentration (≤10 μg ml−1, for lysozyme ≤200 μg ml−1) and dependence of surface wettability, as well as adsorption kinetics and elutability of adsorbed films by buffer and sodium dodecyl sulphate (SDS) solutions were investigated. Results showed that the amounts adsorbed decreased in the order lactoferrin  lactoperoxidase > lysozyme  histatin 5. On hydrophilic silica, the adsorption was most likely driven by electrostatic interactions, which resulted in adsorbed amounts of lactoferrin that indicated the formation of a monolayer with both side-on and end-on adsorbed molecules. For lactoperoxidase the adsorbed amounts were somewhat higher than an end-on monolayer, lysozyme adsorption showed amounts corresponding to a side-on monolayer, and histatin 5 displayed adsorbed amounts in the range of a side-on monolayer. On hydrophobized substrata, the adsorption was also mediated by hydrophobic interactions, which resulted in lower adsorbed amounts of lactoferrin and lactoperoxidase; closer to side-on monolayer coverage. For both lysozyme and histatin 5 the adsorbed amounts were the same as on the hydrophilic silica. The investigated proteins exhibited fast adsorption kinetics, and the initial kinetics indicated mass transport controlled behaviour at low concentrations on both types of substrates. Buffer rinsing and SDS elution indicated that the proteins in general were more tightly bound to the hydrophobized surface compared to hydrophilic silica. Overall, the surface activity of the investigated proteins implicates their importance in the salivary film formation.  相似文献   

3.
Adsorption of fibrinogen from aqueous solutions on mica was studied using AFM and in situ streaming potential measurements. In the first stage, bulk physicochemical properties of fibrinogen and the mica substrate were characterized for various ionic strength and pH. The zeta potential and number of uncompensated (electrokinetic) charges on the protein surfaces were determined from microelectrophoretic measurements. Analogously, using streaming potential measurements, the electrokinetic charge density of mica was determined for pH range 3-10 and the NaCl background electrolyte concentration of 10(-3) and 10(-2) M. Next, the kinetics of fibrinogen adsorption at pH 3.5 and 7.4 in the diffusion cell was studied using a direct AFM determination of the number of molecules per unit area of the mica substrate. Then, streaming potential measurements were performed to determine the apparent zeta potential of fibrinogen-covered mica for different pH and ionic strength in terms of its surface concentration. A quantitative interpretation of these streaming potential measurements was achieved in terms of the theoretical model postulating a side-on adsorption of fibrinogen molecules as discrete particles. On the basis of these results, the maximum coverage of fibrinogen Θ close to 0.29 was predicted, in accordance with previous theoretical predictions. It was also suggested that anomalous adsorption for pH 7.4, where fibrinogen and the mica substrate were both negatively charged, can be explained in terms of a heterogeneous charge distribution on fibrinogen molecules. It was estimated that the positive charge was 12 e (for NaCl concentration of 10(-2) M and pH 7.4) compared with the net charge of fibrinogen at this pH, equal to -21 e. Results obtained in this work proved that the coverage of fibrinogen can be quantitatively determined using the streaming potential method, especially for Θ < 0.2, where other experimental methods become less accurate.  相似文献   

4.
This paper presents a study on the adsorption of rabbit immunoglobulin G onto CdTe quantum dots (QDs)/polystyrene microspheres. The adsorption appears to be sensitive to pH conditions and ionic strength. Maximum adsorption for protein was obtained near the isoelectric point. Adsorption isotherm analysis demonstrated that the electrostatic interaction plays an important role in the adsorption of protein. The thickness of adsorbed layer calculated from the maximal adsorption amounts (q(m)) is 6.5 nm, which indicates that the rabbit IgG molecules exist between the side-on and end-on mode in the monolayer. The bio-functional rabbit IgG/fluorescent microspheres were further used for the detection of antibody in fluoroimmunoassays. This approach allowed detection of goat anti-rabbit IgG in the range of 1-100 ng/mL.  相似文献   

5.
Ordered, low coverage to monolayer, high-κ oxide adsorption on group III rich InAs(0 0 1)-(4×2) and In(0.53)Ga(0.47)As(0 0 1)-(4×2) was modeled via density functional theory (DFT). Initial adsorption of HfO(2) and ZrO(2) was found to remove dangling bonds on the clean surface. At full monolayer coverage, the oxide-semiconductor bonds restore the substrate surface atoms to a more bulklike bonding structure via covalent bonding, with the potential for an unpinned interface. DFT models of ordered HfO(2)/In(0.53)Ga(0.47)As(0 0 1)-(4×2) show it fully unpins the Fermi level.  相似文献   

6.
The mode of adsorption of bovine serum albumin (BSA) on porous polyethylene (PE) membrane was studied as a function of time and concentration, which may contribute to the surface coverage. An improved physical model for adsorption is initiated based on the results of the adsorptional and desorptional measurements, FTIR analysis, and AFM observations as well as streaming potential measurements. The results obtained indicate that the adsorptional mode depend on both time and concentration. It is shown that a critical concentration (about 1000 ppm here) exists in the adsorptional process. Below this concentration, the adsorption seems to be conducted in a normal side-on way but time elapse gives rise to greater conformational change than concentration increase; above this concentration, the aggregation of protein molecular plays a decisive role and the adsorption is in an aggregation way, which is similar to end-on, but a relative large gap between the adsorbed molecules exists due to aggregation. This conclusion is general and can be expected to apply in other globular protein-hydrophobic porous surface systems.  相似文献   

7.
The uptake of gaseous ethanol, 1,1,1-trifluoroethanol, acetone, chloral (CCl(3)CHO), and fluoral (CF(3)CHO) on ice films has been investigated using a coated-wall flow tube at temperatures 208-228 K corresponding to the upper troposphere (UT), with a mass spectrometric measurement of gas concentration. The uptake was largely reversible and followed Langmuir-type kinetic behavior, i.e., surface coverage increased with the trace gas concentration approaching a maximum surface coverage at a gas phase concentration of N(max) ~ (2-4) × 10(14) molecules cm(-3), corresponding to a surface coverage of ~30% of a monolayer (ML). The equilibrium partition coefficients, K(LinC), were obtained from the experimental data by analysis using the simple Langmuir model for specific conditions of temperature and concentration. The analysis showed that the K(LinC) depend only weakly on surface coverages. The following expressions described the temperature dependence of the partition coefficients (K(LinC)) in centimeters, at low coverage for ethanol, trifluoroethanol, acetone, chloral, and fluoral: K(LinC) = 1.36 × 10(-11)?exp(5573.5/T), K(LinC) = 3.74 × 10(-12)?exp(6427/T), K(LinC) = 3.04 × 10(-9)?exp(4625/T), K(LinC) = 7.52 × 10(-4)?exp(2069/T), and K(LinC) = 1.06 × 10(-2)?exp(904/T). For acetone and ethanol the enthalpies and entropies of adsorption derived from all available data showed systematic temperature dependence, which is attributed to temperature dependent surface modifications, e.g., QLL formation. For chloral and fluoral, there was an irreversible component of uptake, which was attributed to hydrate formation on the surface. Rate constants for these surface reactions derived using a Langmuir-Hinshelwood mechanism are reported.  相似文献   

8.
Feng G  Niu T  You X  Wan Z  Kong Q  Bi S 《The Analyst》2011,136(23):5058-5063
This paper examines the effect of five major pretreatments on the surface coverage Γ(m) of dodecanethiol self-assembled monolayer on polycrystalline gold electrode (C(12)SH-SAMs-Au). It is based on the electrochemical reductive desorption in the alkaline solution by cyclic voltammetry (CV). The five different pretreatment methods include: aqua regia pretreatment, reductive annealed pretreatment, UV/O(3) pretreatment, piranha reagents pretreatment and simple polishing pretreatment, and then all above pretreatments following the same procedure of electrochemistry cleaning. The experimental results show that the surface coverage Γ(m) for C(12)SH-SAMs-Au by the five pretreatment methods are: aqua regia pretreatment (8.0 × 10(-10) mol cm(-2)) ~ reductive annealed pretreatment (7.8 × 10(-10) mol cm(-2)) > UV/O(3) pretreatment (5.0 × 10(-10) mol cm(-2)) ~ piranha reagents pretreatment (4.1 × 10(-10) mol cm(-2)) ~ simple polishing pretreatment (4.0 × 10(-10) mol cm(-2)). This indicates that Au surfaces pretreated by aqua regia and reductive annealing can achieve the best results, and the Γ(m) values obtained are consistent with the theoretical coverage values (Γ(m) ≈ 8.0 × 10(-10) mol cm(-2)); however, the Γ(m) values for other three pretreatment methods (UV/O(3), piranha reagents and simple polishing) are not satisfactory, obtaining only almost half of the theoretical Γ(m) value. Thus, we recommend aqua regia and reductive annealed pretreatments as the best methods for self-assembling the alkyl thiol monolayer (C(n)SH-SAMs-Au), whereas UV/O(3), piranha reagents and simple polishing pretreatments are not recommended.  相似文献   

9.
Quartz crystal microbalance with dissipation (QCM-D) measurements were used to investigate the adsorption of human fibrinogen, human serum albumin, bovine hemoglobin, horse heart cytochrome c, human immunoglobulin (hIgG), and 10% fetal bovine serum on supported bilayers of egg-phosphatidylcholine (eggPC) lipids. For comparison the adsorption of fibrinogen and hIgG to eggPC bilayers was also studied with surface plasmon resonance (SPR). The supported bilayers were formed in situ by vesicle adhesion and spontaneous fusion onto a SiO(2) surface. The supported lipid bilayer is highly protein resistant: The irreversible adsorption measured with the QCM-D technique was below the detection level, while reversible protein adsorption was detected for all the proteins in the range 0.3-4% of the saturation coverage on a hydrophobic thiol monolayer on gold. The adsorbed amounts were slightly higher for the SPR measurements. Possible mechanisms for the protein resistance of eggPC bilayers are briefly discussed.  相似文献   

10.
The reaction between TiO(2+) and ONOOH in 0.9 M H(2)SO(4) provides evidence for direct formation, previously unobserved, of a HOONO-metal complex. The reaction proceeds via formation of an end-on complex (k = 3.0 x 10(2) M(-1) s(-1)) that rearranges to form a side-on complex (k approximately equal to 20 s(-1)). With ONOOH in excess, this rearrangement proceeds more slowly (k approximately equal to 0.1 s(-1)), probably because multiple hydrogen oxoperoxonitrate molecules form end-on complexes with oxotitanium(IV) and hinder rearrangement to the side-on complex. The absorption spectrum of the final product is that of TiO(2)(2+). Presumably, during the rearrangement or later, NO+ is lost.  相似文献   

11.
1 INTRODUCTION Cyanide, CN, is an important free-radical mole-cule of one carbon chemistry, organic chemistry, free-radical chemistry and cosmochemistry. And the im-portant industrial processes, such as the Andrussovreaction, depend on the reactivity of CN bond[1]. Thechemistry of cyanide is also important in the surfacechemistry of a number of C- and N-containing sys-tems[1, . During the past decade, the adsorption of 2]CN and CN-containing molecules on transition metalsurfa…  相似文献   

12.
Periodic DFT calculations are used to predict and investigate the adsorption behavior of molecular oxygen on Au, Au/Pt, and Pt surfaces. To obtain an array of pyramids containing surface atoms with the lowest possible coordination number, a nano-modified surface consisting of a symmetrically "modified" (100) surface was used. The effect of atom substitution (organized alloying) is investigated. The adsorption of molecular oxygen on a pure gold pyramid is exothermic by 0.77 eV for the end-on adsorption mode. In the case of a pure platinum pyramid, the end-on adsorption mode was found to dissociate; however, a side-on geometry was encountered with an energy of adsorption of 2.3 eV. This value is in line with the fact that the adsorption energy of small molecules does not vary much on Pt surfaces with different indices. Additionally, some geometrically related trends of the surface deformation in relation to its composition and after adsorption of molecular oxygen are highlighted.  相似文献   

13.
The interaction of cyanide (CN) with different sites on Ni(111) surface is studied by using density functional theory (DPT). Ni19 cluster is used to simulate the surface. The present calculations show that the end-on bonded (through C atom) configuration is much more preferable than the side-on bonded CN or other configurations on the same adsorption site. For all adsorption modes, adsorption energies at the top, bridge, and three-fold sites on Ni(111) are comparable, with the bridge site of the end-on bonded CN (through C atom) more favorable than other adsorption sites. CN vibrational frequencies are red-shifted at all cases, except that the end-on CN bonded(through C atom) on the top site is blue-shifted. The bonding of CN on the Ni(111) surface is largely ionic.  相似文献   

14.
A quartz crystal microbalance coupled with electrochemistry was used to examine the adsorption of azurin on a gold electrode modified with a self-assembled monolayer of octanethiol. Azurin adsorbed irreversibly to form a densely packed monolayer. The rate of azurin adsorption was related to the bulk concentration of azurin in solution within the concentration range studied. At a high azurin concentration (2.75 muM), adsorption was rapid with a stable adsorption maximum attained in 2-3 min. At a lower azurin solution concentration (0.35 muM), the time to reach a stable adsorption maximum was approximately 30 min. Interestingly, the maximum surface concentration attained for all solution concentrations studied by the QCM method was 25 +/- 1 pmol cm-2, close to that predicted for monolayer coverage. The dissipation was monitored during adsorption, and only small changes were detected, implying a rigid adsorption model, as needed when using the Sauerbrey equation. Cyclic voltammetric data were consistent with a one-electron, surface-confined CuII/CuI azurin process with fast electron-transfer kinetics. The electroactive surface concentration calculated using voltammetry was 7 +/- 1 pmol cm-2. The differences between the QCM and voltammetrically determined surface coverage values reflect, predominantly, the different measurement methods but imply that all surface-confined azurin is not electrochemically active on the time scale of cyclic voltammetry.  相似文献   

15.
Lysozyme adsorption at the silica/water interface has been studied using a new analytical technique called dual polarization interferometry. This laboratory-based technique allows the build up or removal of molecular layers adsorbing or reacting on a lightly doped silicon dioxide (silica) surface to be measured in terms of thickness and refractive index changes with time. Lysozyme adsorption was studied at a range of concentrations from 0.03 to 4.0 g dm(-3) and at both pH 4 and pH 7. Adsorbed layers ranging from 14 to 43 +/- 1 A in thickness and 0.21 to 2.36 +/- 0.05 mg m(-2) in mass coverage were observed at pH 4 with increasing lysozyme concentration, indicating a strong deformation of the monolayer over the low concentration range and the formation of an almost complete sideways-on bilayer toward the high concentration of 4 g dm(-3). At pH 7, the thickness of adsorbed layers varied from 16 to 54 +/- 1 A with significantly higher surface coverage (0.74 to 3.29 +/- 0.05 mg m(-2)), again indicating structural deformation during the initial monolayer formation, followed by a gradual transition to bilayer adsorption over the high concentration end. The pH recycling performed at a fixed lysozyme concentration of 1.0 g dm(-3) indicated a broadly reversible adsorption regardless of whether the pH was cycled from pH 7 to pH 4 and back again or vice versa. These observations are in good agreement with earlier studies undertaken using neutron reflection although the fine details of molecular orientations in the layers differ subtly.  相似文献   

16.
The influence of temperature on the composition of mixed monolayer formed at the methyl alcohol/acetic acid aqueous solution was examined by surface tension measurements. Surface tension of various two-component solutions was obtained at 10, 20 and 28 °C temperatures in the 0–0.5 M range of bulk concentration of alcohol and acid, respectively. Three independent methods, i.e., the Gibbs adsorption equation (GAE), regular solution approximation (RSA) and Butler adsorption isotherm (BAI) were applied to calculate surface composition of the methyl alcohol/ acetic acid mixed monolayer. It was shown that in the temperature range of 10–28 °C the surface molar fraction of the solutes remained constant for the fixed bulk concentration of alcohol and acid. Additionally, based on the RSA and BAI methods, we showed there were no interactions between solute molecules in the mixed monolayer in the studied range of concentrations. Received: 18 December 1997 Accepted: 8 May 1998  相似文献   

17.
A combined experimental-computational approach was used to study the self-organization and microenvironment of 1-methylnaphthalene (1MN) deposited on the surface of artificial snow grains from vapors at 238 K. The specific surface area of this snow (1.1 × 10(4) cm(2) g(-1)), produced by spraying very fine droplets of pure water from a nebulizer into liquid nitrogen, was determined using valerophenone photochemistry to estimate the surface coverage by 1MN. Fluorescence spectroscopy at 77 K, in combination with molecular dynamics simulations, and density functional theory (DFT) and second-order coupled cluster (CC2) calculations, provided evidence for the occurrence of ground- and excited-state complexes (excimers) and other associates of 1MN on the snow grains' surface. Only weak excimer fluorescence was observed for a loading of 5 × 10(-6) mol kg(-1), which is ~2-3 orders of magnitude below monolayer coverage. However, the results indicate that the formation of excimers is favored at higher surface loadings (>5 × 10(-5) mol kg(-1)), albeit still being below monolayer coverage. The calculations of excited states of monomer and associated moieties suggested that a parallel-displaced arrangement is responsible for the excimer emission observed experimentally, although some other associations, such as T-shape dimer structures, which do not provide excimer emission, can still be relatively abundant at this surface concentration. The hydrophobic 1MN molecules, deposited on the ice surface, which is covered by a relatively flexible quasi-liquid layer at 238 K, are then assumed to be capable of dynamic motion resulting in the formation of energetically preferred associations to some extent. The environmental implications of organic compounds' deposition on snow grains and ice are discussed.  相似文献   

18.
The effect of SiO(x) monolayer coverage on the rate of TiO(2) photocatalytic oxidation of cetylpyridinium bromide (CPB) in aqueous solutions has been studied. The rate of CPB removal from the solution (5相似文献   

19.
A novel determination method of electroinactive molecules by means of electrochemical technique is presented. A new self-assembled monolayer containing cyclodextrin(CD) is prepared with mono(6-o-p-tolylsulfonyl)-b-cyclodextrin. Although this derivatization process leads to a b-CD coverage of 10% of a full monolayer, this layer shows an effective host-guest response to ferrocene. The interfacial ferrocene complexation gives a response similar to that expected for a Langmuir adsorption isotherm yielding a stability constant of 4.2×104 mol-1@L and a maximum ferrocene coverage of 8.6′10-12 mol/cm2. The redox peak currents of the surface-confined ferrocene de-crease upon addition of competing b-CD guest species to the solution, such as m-toluic acid(mTA) and sodium dodecyl sulfonate(SDS). This principle has been used for the determination of the electroinactive molecules, mTA and SDS in the concentration ranges of 0.8-2.7 mmol/L and 5-100 nmol/L, respectively.  相似文献   

20.
采用自旋极化密度泛函和广义梯度近似的方法并结合周期平板模型, 探讨了不同覆盖度(θ)下双金 属簇X (X=Pt-Au, Au-Au)在(3×2)TiO2(110)完整表面上的吸附行为. 另外, 在本文给出的所有覆盖度模式下(θ= 1/6-1 ML), 我们仅研究其基态构型. 计算结果表明: 当θ<1/2 ML时, 金属簇X在TiO2(110)表面上吸附能随覆盖 度的增加而增加; 当θ>1/2 ML时, 除了饱和覆盖度下, 吸附能随覆盖度的增加而减小; 当θ=1/2 ML时, 吸附能最 大. 即使Pt-Au/TiO2体系的吸附能比Au-Au/TiO2体系的小, 但相对于Au-Au 簇, Pt-Au 簇更容易在TiO2(110)表 面上形成双金属单分子层. 在半覆盖和全覆盖下, X簇的峰与TiO2的峰在-3.0 eV到费米能级之间产生明显重 叠, 表明簇与底物之间存在化学作用. 且当覆盖度小时, X-TiO2相互作用是成簇的主要因素; 随着覆盖度的增 大, X-X原子间相互作用就逐渐变成了成簇的主要动力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号