首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We study the properties of meromorphic solutions of the Schwarzian differential equations in the complex plane by using some techniques from the study of the class Wp. We find some upper bounds of the order of meromorphic solutions for some types of the Schwarzian differential equations. We also show that there are no wandering domains nor Baker domains for meromorphic solutions of certain Schwarzian differential equations.  相似文献   

2.
A new method for finding contact symmetries is proposed for both ordinary and partial differential equations. Symmetries more general than Lie point are often difficult to find owing to an increased dependency of the infinitesimal functions on differential quantities. As a consequence, the invariant surface condition is often unable to be “split” into a reasonably sized set of determining equations, if at all. The problem of solving such a system of determining equations is here reduced to the problem of finding its own point symmetries and thus subsequent similarity solutions to these equations. These solutions will (in general) correspond to some subset of symmetries of the original differential equations. For this reason, we have termed such symmetries associate symmetries. We use this novel method of associate symmetries to determine new contact symmetries for a non-linear PDE and a second order ODE which could not previously be found using computer algebra packages; such symmetries for the latter are particularly difficult to find. We also consider a differential equation with known contact symmetries in order to illustrate that the associate symmetry procedure may, in some cases, be able to retrieve all such symmetries.  相似文献   

3.
Classical results concerning the asymptotic behavior solutions of systems of linear differential or difference equations lead to formulas containing factors that are asymptotically constant, i.e., k+o(1) as t tends to infinity. Here we are interested in more precise information about the o(1) terms, specifically how they depend precisely on certain perturbation terms in the equation. Results along these lines were given by Gel'fond and Kubenskaya for scalar difference equations and we will both extend and generalize one of them as well as provide some corresponding results for differential equations.  相似文献   

4.
We investigate difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order, ordinary differential equations. We formulate conditions under which all solutions to the discrete problem satisfy certain a priori bounds which are independent of the step-size. As a result, the nonexistence of spurious solutions are guaranteed. Some existence and convergence theorems for solutions to the discrete problem are also presented.  相似文献   

5.
Some linear difference equations with periodic coefficients (not necessarily nonnegative) are considered. Necessary conditions and sufficient conditions for the oscillation of the solutions are established. Conditions under which all nonoscillatory solutions tend to zero at ∞ are also presented. The results obtained are the discrete analogues of the oscillation results for some linear delay differential equations with periodic coefficients, which were given earlier by the second author [Oscillations of some delay differential equations with periodic coefficients, J. Math. Anal. Appl. 162 (1991) 452–475].  相似文献   

6.
Variation of parameter methods play a fundamental rôle in understanding solutions of perturbed nonlinear differential as well as difference equations. This paper is devoted to the study of n-point boundary value problems associated with systems of nonlinear first-order summary difference equations by using the nonlinear variation of parameter methods. New variational formulae, which provide connections between the solutions of initial value problems and n-point boundary value problems, are obtained. An iterative scheme for computing approximated solutions of the boundary value problems is also provided.  相似文献   

7.
I considered if solutions of stochastic differential equations have their density or not when the coefficients are not Lipschitz continuous. However, when stochastic differential equations whose coefficients are not Lipschitz continuous, the solutions would not belong to Sobolev space in general. So, I prepared the class Vh which is larger than Sobolev space, and considered the relation between absolute continuity of random variables and the class Vh. The relation is associated to a theorem of N. Bouleau and F. Hirsch. Moreover, I got a sufficient condition for a solution of stochastic differential equation to belong to the class Vh, and showed that solutions of stochastic differential equations have their densities in a special case by using the class Vh.  相似文献   

8.
In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.  相似文献   

9.
In this paper, we systematically investigates the existence of periodic solutions of a predator-prey system with sparse effect and Beddington-DeAngelis or Holling III functional response on time scales. By using a continuation theorem based on coincidence degree theory, we obtain sufficient criteria for the existence of periodic solutions for the systems. Moreover, when the time scale T is chosen as R or Z, the existence of the periodic solutions of the corresponding continuous and discrete models follows. Therefore, the methods are unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations.  相似文献   

10.
This paper deals with a class of anticipated backward stochastic differential equations. We extend results of Peng and Yang (2009) to the case in which the generator satisfies non-Lipschitz condition. The existence and uniqueness of solutions for anticipated backward stochastic differential equations as well as a comparison theorem are obtained. The existence and uniqueness of Lp(p>2) solutions for anticipated backward stochastic differential equations are also studied.  相似文献   

11.
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p≥2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p≥2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj.  相似文献   

12.
The Borel exceptional value and the exponents of convergence of poles, zeros and fixed points of finite order transcendental meromorphic solutions for difference Painlevé I and II equations are estimated. And the forms of rational solutions of the difference Painlevé II equation and the autonomous difference Painlevé I equation are also given. It is also proved that the non-autonomous difference Painlevé I equation has no rational solution.  相似文献   

13.
The stability and boundedness of the solution for stochastic functional differential equation with finite delay have been studied by several authors, but there is almost no work on the stability of the solutions for stochastic functional differential equations with infinite delay. The main aim of this paper is to close this gap. We establish criteria of pth moment ψγ(t)-bounded for neutral stochastic functional differential equations with infinite delay and exponentially stable criteria for stochastic functional differential equations with infinite delay, and we also illustrate the result with an example.  相似文献   

14.
We study the class of nonlinear ordinary differential equations y″ y = F(z, y2), where F is a smooth function. Various ordinary differential equations with a well-known importance for applications belong to this class of nonlinear ordinary differential equations. Indeed, the Emden–Fowler equation, the Ermakov–Pinney equation, and the generalized Ermakov equations are among them. We construct Bäcklund transformations and auto-Bäcklund transformations: starting from a trivial solution, these last transformations induce the construction of a ladder of new solutions admitted by the given differential equations. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficult to apply.  相似文献   

15.
In this paper, we study the existence and multiplicity of solutions of the operator equation Kfu=u in the real Hilbert space L2(G). Under certain conditions on the linear operator K, we establish the conditions on f which are able to guarantee that the operator equation has at least one solution, a unique solution, and infinitely many solutions, respectively. The monotone operator principle and the critical point theory are employed to discuss this problem, respectively. In argument, quadratic root operator K1/2 and its properties play an important role. As an application, we investigate the existence and multiplicity of solutions to fourth-order boundary value problems for ordinary differential equations with two parameters, and give some new existence results of solutions.  相似文献   

16.
The Tau method is a numerical technique that consists in constructing polynomial approximate solutions for ordinary differential equations. This method has two approaches: operational and recursive. The former converts the differential problem to a matrix problem and produces approximations in terms of a prescribed orthogonal polynomials basis. In the recursive approach, we construct approximate solutions in terms of a special set of polynomials {Q k (t); k?=?0, 1, 2...} called canonical polynomials basis. In some cases, the Q k ??s can be obtained explicitly through a recursive formula. But no analogous formulae are reported in the literature for the general cases. In this paper, utilizing the operational Tau method, we develop an algorithm that allows to generate those canonical polynomials iteratively and explicitly. In addition, we demonstrate the capability of the operational Tau method in treating quadratic optimal control problems governed by ordinary differential equations.  相似文献   

17.
We study a bifurcation problem for a system of two differential equations in implicit form. For each value of the parameter θ, the solution yields a pair of Nash equilibrium strategies in feedback form, for a non-cooperative differential game. When θ=0, the second player has no power to influence the dynamics of the system, and his optimal strategy is myopic. The game thus reduces to an optimal control problem for the first player. By studying the bifurcation in the solutions to the corresponding system of Hamilton-Jacobi equations, one can establish existence and multiplicity of solutions to the differential game, as θ becomes strictly positive.  相似文献   

18.
We study power series whose coefficients are holomorphic functions of another complex variable and a nonnegative real parameter s, and are given by a differential recursion equation. For positive integer s, series of this form naturally occur as formal solutions of some partial differential equations with constant coefficients, while for s=0 they satisfy certain perturbed linear ordinary differential equations. For arbitrary s?0, these series solve a differential-integral equation. Such power series, in general, are not multisummable. However, we shall prove existence of solutions of the same differential-integral equation that in sectors of, in general, maximal opening have the formal series as their asymptotic expansion. Furthermore, we shall indicate that the solutions so obtained can be related to one another in a fairly explicit manner, thus exhibiting a Stokes phenomenon.  相似文献   

19.
We consider linear differential equations with regular coefficients in ¦ z ¦ < 1. We obtain sufficient conditions for all the solutions of these equations to vanish a given number of times at the most. First the results are obtained for differential equations of second order, then for differential equations of nth order, n > 2.  相似文献   

20.
In this paper, we present a further extended tanh method for constructing exact solutions to nonlinear difference-differential equation(s) (NDDEs) and Lattice equations. By using this method via symbolic computation system MAPLE, we obtain abundant soliton-like and period-form solutions to the (2 + 1)-dimensional Toda equation. Solitary wave solutions are merely a special case in one family. This method can also be used to other nonlinear difference differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号