首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between colloidal AgTiO2 nanoparticles and bovine serum albumin (BSA) was studied by using absorption, steady state, time resolved and synchronous fluorescence spectroscopy measurements. Absorption spectroscopy proved the formation of a ground state BSA?AgTiO2 complex. Upon excitation of BSA, colloidal AgTiO2 nanoparticles effectively quenched the intrinsic fluorescence of BSA. The number of binding sites (n = 1.06) and apparent binding constant (K = 3.71 × 105 M−1) were calculated by the fluorescence quenching method. A static mechanism and conformational changes of BSA were observed.  相似文献   

2.
3.
The interaction between colloidal TiO2 and bovine serum albumin (BSA) was studied by using absorption and fluorescence spectroscopic methods. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of colloidal TiO2 was analyzed and number of binding sites (n) and apparent binding constant (K) were measured. The quenching mechanism of albumin by colloidal TiO2 is discussed. The energy transfer efficiency (E) and critical transfer distance (R0) were determined.  相似文献   

4.
We determine the association constants for ligand–protein complex formation using the flow injection method. We carry out the measurements at high flow rates (F = 1 mL min−1) of a carrier phase. Therefore, determination of the association constant takes only a few minutes. Injection of 1 nM of the ligand (10 μL of 1 μM concentration of the ligand solution) is sufficient for a single measurement. This method is tested and verified for a number of complexes of selected drugs (cefaclor, etodolac, sulindac) with albumin (BSA). We obtain K = 4.45 × 103 M−1 for cefaclor, K = 1.00 × 105 M−1 for etodolac and K = 1.03 × 105 M−1 for sulindac in agreement with the literature data. We also determine the association constants of 20 newly synthesized 3β- and 3α-aminotropane derivatives with potential antipsychotic activity – ligands of 5-HT1A, 5-HT2A and D2 receptors with the albumin. Results of the studies reported here indicate that potential antipsychotic drugs bind weakly to the transporter protein (BSA) with ≈ 102–103 M−1. Our method allows measuring K in a wide range of values (102–109 M−1). This range depends only on the solubility of the ligand and sensitivity of the detector.  相似文献   

5.
A pyrimethanil-imprinted polymer (P1) was prepared by iniferter-mediated photografting a mixture of methacrylic acid and ethylene dimethacrylate onto homemade near-monodispersed chloromethylated polydivinylbenzene beads. The chromatographic behaviour of a column packed with these imprinted beads was compared with another column packed with irregular particles obtained by grinding a bulk pyrimethanil-imprinted polymer (P2). The comparison was made using the kinetic model of non-linear chromatography, studying the elution of the template and of two related substances, cyprodinil and mepanipyrim. Extension of the region of linearity, capacity factors for the template and the related substances, column selectivity, binding site heterogeneity, apparent affinity constant (K) and lumped kinetic association (ka) and dissociation rate constant (kd) were studied during a large interval of solute concentration, ranging between 1 and 2000 μg/ml. From the experimental results obtained, in the linearity region of solute concentration column selectivity and binding site heterogeneity remained essentially the same for the two columns, while column capacity (at 20 μg/ml, P1 = 23.1, P2 = 11.5), K (at 20 μg/ml, P1 = 8.3 × 106 M−1, P2 = 2.5 × 106 M−1) and ka (at 20 μg/ml, P1 = 3.5 μM−1 s−1, P2 = 0.47 μM−1 s−1) significantly increased and kd (at 20 μg/ml, P1 = 0.42 s−1, P2 = 0.67 s−1) decreased for the column packed with the imprinted beads. These results are consistent with an influence of the polymerisation method on the morphology of the resulting polymer and not on the molecular recognition properties due to the molecular imprinting process.  相似文献   

6.
A riboflavin–molybdenum [(RF)–Mo(V)] complex in powder form was synthesized and characterized by elemental analysis, UV–Vis, IR, NMR spectroscopy and X-ray diffraction. During the synthesis of this metal complex, another metal complex [Mo2O4(H2O)6]2+ was also synthesized and characterized. The results of X-ray diffraction study have revealed an orthorhombic cubic system for the RF–Mo complex. The steady state absorption and emission studies of RF and RF–Mo in hydrochloric acid (HCl) of varying pH were investigated. The steady state absorption with RF–Mo showed distinct changes in the absorption spectra of RF after complexation. The steady state emission results, consistent with prior reports showed fluorescence quenching in the aqueous solution of both RF and RF–Mo in HCl with the proton acting as a quencher. The Stern–Volmer constant observed was 108.79 and 98.68 for RF and RF–Mo, respectively. The binding constant for RF–Mo complex was found to be 1.201 × 103 M−1 at 298 K.  相似文献   

7.
A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH2-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH2-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH2-IL and negatively charged catalase a sensitive H2O2 biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized catalase were 3.32 × 10−12 mol cm−2, 5.28 s−1 and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM−1 cm−2 and low detection limit of 100 nM at concentration range up to 2.1 mM.  相似文献   

8.
GFX in water, at pH 7.0, shows intense absorption bands with peaks at 284 and 333 nm, (ε=24,670 and 12,670 M−1 cm−1). Both the absorption and emission properties of GFX were pH-dependent; the pKa values for the protonation equilibria of the ground state (5.7 and 8.9) and excited singlet state (3.6 and 7.5) of GFX were determined spectroscopically. GFX fluoresces weakly, with a maximum quantum yield for fluorescence emission (0.06) at pH 4.7. A series of experiments were performed to characterize the transient species of GFX in aqueous solution using laser flash photolysis and pulse radiolysis. GFX undergoes monophotonic photoionization with a quantum yield of 0.16 on a 355 nm laser excitation. This process leads to the formation of a long-lived cation radical with a maximum absorption at 380 nm. Triplet-triplet absorption had maximum absorption at 510 nm. The reaction of GFX with one-electron oxidant N3 was investigated and the bimolecular rate constant was determined to be 3.1×109 M−1 s−1.  相似文献   

9.
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08–0.60 ng L−1) and wide linearity (5–5000 ng L−1) were achieved under the optimal conditions. The repeatabilities (n = 5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 3.7–15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.  相似文献   

10.
A naphthyridine-based charge neutral receptor has been designed and synthesized. Its complexation with a series of carboxylic acids involved in the Krebs cycle has been studied by 1H NMR, UV-vis and fluorescence methods. The receptor shows strong binding to citric acid (Ka = 1.60 × 105 M−1) and is also able to distinguish diastereomeric maleic acid from fumaric acid by fluorescence.  相似文献   

11.
The interaction of quercetin-Cu(II) complex with calf thymus DNA was investigated with the use of Neutral Red (NR) dye as a spectral probe by the application of UV-vis spectrophotometry, cyclic voltammetry and synchronous fluorescence spectroscopy. The results showed that both quercetin-Cu(II) complex and the NR molecule can intercalate into the double helix of the DNA. The 2:1 quercetin:Cu(II) complex (estimated binding constant = 2.85 × 109) is stabilized by intercalation in the DNA (binding constant, K[quercetin-Cu(II)-DNA] = (1.82 ± 0.20) × 105 M−1), and displaces the NR dye from the NR-DNA complex in a competitive reaction. Cyclic voltammetry studies confirm the intercalation reaction and show that the ratio (KR/KO) of binding constants for the reduced and oxidized forms of the metal complex is 2.05. Furthermore, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data. This yielded the equilibrium concentration profiles of each component in the reaction (NR, NR-DNA and quercetin-Cu(II)) as well as the corresponding pure spectra. The extracted profiles showed that at equilibrium the [NR-DNA] and [NR] trends decreased and increased symmetrically, respectively, with approximately linear behaviour being observed below 10 × 10−6 mol L−1 of the added quercetin-Cu2+ complex. Thereafter, these trends converged asymptotically. The free [quercetin-Cu(II)] trend-line at equilibrium was linear over the whole range of the complex added. It was possible to estimate the approximate value of the equilibrium constant of the exchange process (approximately 5 × 10−1) involving the intercalation of the quercetin-Cu(II) complex. It was also found that about 35% of the bound complex was unaccounted by the intercalation reaction, presumably being stabilized at an alternative site.  相似文献   

12.
By self-assembly in aqueous solution, calix- (CAS) and thiacalix[4]arene-p-tetrasulfonate (TCAS) formed luminescent complexes TbIII·(CAS)2 and TbIII·TCAS, respectively, which were utilized as a host for cationic guests. Addition of 1-ethylpyridinium guest quenched luminescence of TbIII·(CAS)2 in accordance with the Stern-Volmer (SV) relation with a low detection limit (D.L.) of 5.94 × 10−8 M (S/N = 3, M ≡ mol dm−3). On the other hand, 1-ethylquinolinium quenched luminescence of TbIII·TCAS most efficiently, affording a very low D.L. (6.71 × 10−10 M). The agreement of the SV coefficients obtained with luminescent intensity (KSV,all = 6.74 × 106 M−1) and lifetime (KSV,Tb = 6.50 × 106 M−1) implied that dynamic quenching of 5D4 excited state of TbIII was predominant in the quenching processes. The quenching rate was estimated to be kq,Tb = 9.94 × 109 M−1 s−1, which was as fast as diffusion-limited rate. Quenching of TbIII·(CAS)2 was also applied to detection of NAD+, with a D.L. of 2.78 × 10−7 M.  相似文献   

13.
Titania-lanthanum phosphate nanocomposites with multifunctional properties have been synthesized by aqueous sol-gel method. The precursor sols with varying TiO2:LaPO4 ratios were applied as thin coating on glass substrates in order to be transparent, hydrophobic, photocatalytically active coatings. The phase compositions of the composite powders were identified by powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The anatase phase of TiO2 in TiO2-LaPO4 composite precursors was found to be stable even on annealing at 800 °C. The glass substrates, coated with TL1 (TiO2-LaPO4 composition with 1 mol% LaPO4) and TL50 (composite precursor containing TiO2 and LaPO4 with molar ratio 1:1) sols and annealed at 400 °C, produced contact angles of 74° and 92°, respectively, though it is only 62° for pure TiO2 coating. The glass substrates, coated with TL50 sol, produced surfaces with relatively high roughness and uneven morphology. The TL1 material, annealed at 800 °C, has shown the highest UV photoactivity with an apparent rate constant, kapp=24×10−3 min−1, which is over five times higher than that observed with standard Hombikat UV 100 (kapp=4×10−3 min−1). The photoactivity combined with a moderate contact angle (85.3°) shows that this material has a promise as an efficient self-cleaning precursor.  相似文献   

14.
The binding interaction of Alpinetin (APT) with bovine serum albumin (BSA) was studied by fluorescence, UV-visible and synchronous fluorescence spectroscopy (SFS) under simulated physiological conditions. The measured complex spectra were resolved by multivariate curve resolution-alternating least squares (MCR-ALS), yielding a host of data and information, which otherwise would have been impossible to obtain. The extracted profiles corresponded to the spectra of the single species in the APT/BSA mixture. In addition, the presence of the APT-BSA complex was demonstrated, and it was shown that the associated quenching of the fluorescence from the BSA protein resulted from the formation of APT-BSA complex via a static mechanism. The binding constant (Ka(ave) = 2.34 × 106 L mol−1) and the number of sites (n = 1) were obtained by fluorescence methods as were the thermodynamic parameters (ΔH0, ΔS0 and ΔG0). This work suggested that the principal binding between APT to BSA was facilitated by hydrophobic interactions. The thermodynamic parameters for APT were compared to those from the structurally similar Chrysin and Wogonin molecules. It appeared that the entropy parameters were relatively more affected by the small structural changes. SFS from the interaction of BSA and APT showed that the ligand affected the conformation of BSA. The competitive interaction of APT and site makers with BSA indicated site I as the binding area of APT in BSA.  相似文献   

15.
A new coumarin derivative containing benzothiazole and piperazine substituents was synthesized. Preferential inclusion of the benzothiazole group, over the coumarin and piperazine groups, inside the cavity of the molecular container cucurbit[7]uril (CB7) was evidenced by using optical and NMR techniques. The binding constant of the new complex with CB7 is higher in its protonated forms (e.g., K = 2.8 × 106 M−1) than in its neutral forms, which led to an increase in the pKa value associated with protonation of the aza nitrogen on the benzothiazole ring of ca. 2.5 units. Such CB7-induced protonation disabled the photoinduced electron transfer (PET) in the included molecule, enhancing its coumarin fluorescence up to ca. 45-fold (pH 3.5, 410 nm). The results are discussed in the context of designing sensitive analytical tools for reversible monitoring of optically inactive analytes by competitive displacement experiments.  相似文献   

16.
Wang Z  Song Z  Chen D 《Talanta》2010,83(2):312-319
The luminol-bovine serum albumin chemiluminescence system was proposed for the first time. It was found that the hydrophilic luminol bound to the hydrophilic domain at Trp134 of BSA with accelerating the electrons transferring rate of excited 3-aminophthalate, which led to the enhancement CL intensity of luminol at 425 nm. The increment of chemiluminescence intensity was proportional to the concentrations of bovine serum albumin from 5.0 × 10−11 to 1.0 × 10−8 mol L−1 with the linear equation of ΔI = 7.47CBSA + 4.89 (R2 = 0.9950). Based on the remarkable quenching effect of cephalosporin on the luminol-bovine serum albumin chemiluminescence system, the interaction of bovine serum albumin-cephalosporin was studied by flow injection-chemiluminescence method. A valuable model for studying the interaction of bovine serum albumin-cephalosporin was constructed and the formula lg[(I0 − I)/I] = lg KD + lg[D] was obtained. The binding parameters calculated by the model did agree very well with the results obtained by fluorescence quenching method. The major binding force of bovine serum albumin with cephalosporins was the hydrophobic effect. The binding ability of cephalosporin analogues to bovine serum albumin followed the pattern: cefoperazone, ceftriaxone and cefotaxime > cefuroxime and cefaclor > cefadroxil, cefradine and cefazolin, which was close to the order of their antibacterial ability. Using flow injection chemiluminescence method also obtained the stoichiometric ratio, the average of association constant KP and dissociation degree α of luminol-bovine serum albumin were 1:1, 1.12 × 107 L mol−1 and 0.086, respectively.  相似文献   

17.
The complexation of native β-cyclodextrin (CD) and seven aromatic compounds, namely, phenetole, toluene, m-xylene, naphthalene, biphenyl, fluorene and phenanthrene, has been studied for first time utilizing a solid-phase microextraction (SPME)–high-performance liquid chromatography (HPLC) method. The stoichiometries of the analyte:β-CD complexes were found to be either 1:1 or 1:2. The formation of 1:2 complexes was confirmed for naphthalene, biphenyl, fluorene, and phenanthrene only when utilizing relatively high concentrations of β-CD (up to 6.6 mM). The 1:2 stoichiometries were confirmed using the classical modified Benesi–Hildebrand (BH) method. The calculated binding constants for 1:1 stoichiometries (K1) using the SPME method varied from 115.3 M−1 for toluene to 3510 M−1 for phenanthrene, whereas the corresponding values to the 1:2 stoichiometries (K3) varied from 7.30 × 105 M−2 for biphenyl to 9.03 × 106 M−2 for naphthalene.  相似文献   

18.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

19.
In combination with abasic site (AP site)-containing oligodeoxynucleotides (ODNs), we demonstrate potential use of a hydrogen bond forming ligand, 2-amino-7-methyl-1,8-naphthyridine (AMND), for the fluorescence detection of the cytosine (C)/guanine (G) mutation sequence of the cancer repression gene p53. Our method is based on construction of the AP site in ODN duplexes, which allows small synthetic ligands to bind to target nucleobases accompanied by fluorescence signaling: an AP site-containing ODN is hybridized with a target ODN so as to place the AP site toward a target nucleobase, by which hydrophobic microenvironments are provided for ligands to recognize target nucleobases through hydrogen-bonding. In 10 mM sodium cacodylate buffer solutions (pH, 7.0) containing 100 mM NaCl and 1.0 mM EDTA, AMND is found to strongly bind to C (Kd=1.5×10−6 M) in the target ODN while the binding affinity for G is relatively moderate (Kd=50×10−6 M). Significant fluorescence quenching of AMND is observed only when binding to C, making it possible to judge the C/G transversion with the naked eye.  相似文献   

20.
In combination with abasic site (AP site)-containing DNAs, potential use of a biotic fluorescence compound, Vitamin B2 (riboflavin), is demonstrated for the fluorescence detection of the thymine (T)-related single-nucleotide polymorphisms. Our method is based on construction of the AP site in DNA duplexes, which allows small ligands to bind to target nucleotides accompanied by fluorescence signaling: an AP site-containing probe DNA is hybridized with a target DNA so as to place the AP site toward a target nucleobase, by which hydrophobic microenvironments are provided for ligands to recognize target nucleotides through stacking and hydrogen-bonding interactions. In 10 mM sodium cacodylate buffer solutions (pH 7.0) containing 100 mM NaCl and 1.0 mM EDTA, Vitamin B2 is found to selectively bind to T (K11 = 1.8 × 106 M−1 at 5 °C) over other nucleobases, and this is accompanied by significant quenching of its fluorescence. While the sensing functions depend on the flanking sequences to the AP site, Vitamin B2 is applicable to the detection of T/C (cytosine), T/G (guanine) and T/A (adenine) mutation sequences of the CYP2A6 gene, where the flanking nucleobases are guanines in both positions (-GXG-, X = AP site).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号