首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
We discuss solution methods for nonlinear vibrations of cables having small initial sag-to-span ratios. One-to-one internal resonances between the in-plane and out-of-plane modes as well as primary resonances of the in-plane mode are considered. Approximate solutions are obtained by two different approaches. In the first approach, the method of multiple scales is applied directly to the governing partial-differential equations and boundary conditions. In the second approach, the equations are first discretized, and then the method of multiple scales is applied to the resulting ordinary-differential equations. It is shown that treatment of the discretized system is inaccurate compared to direct treatment of the partial-differential system. Discrepancies between the two solutions appear even at the first level of approximation. Stability analyses of the amplitude and phase modulation equations for both methods are also performed.  相似文献   

2.
Nayfeh  Ali H. 《Nonlinear dynamics》1998,16(2):105-125
Methods for the study of weakly nonlinear continuous (distributed-parameter) systems are discussed. Approximate solution procedures based on reduced-order models via the Galerkin method are contrasted with direct application of the method of multiple scales to the governing partial-differential equations and boundary conditions. By means of several examples and an experiment, Nayfeh and co-worker had shown that reduced-order models of nonlinear continuous systems obtained via the Galerkin procedure can lead to erroneous results. A method is developed for producing reduced-order models that overcomes the shortcomings of the Galerkin procedure. Treatment of these models yields results in agreement with those obtained experimentally and those obtained by directly attacking the continuous system.  相似文献   

3.
We follow two approaches to derive the normal form that represents the aeroelastic response of the Goland wing. Such a form constitutes an effective tool to model the main physical behaviors of aeroelastic systems and, as such, can be used for developing a phenomenological reduced-order model. In the first approach, an approximation of the wing’s response near the Hopf bifurcation is constructed by directly applying the method of multiple scales to the two coupled partial-differential equations of motion. In the second approach, we apply the same method to a Galerkin discretized model that is based on the mode shapes of a cantilever beam. The perturbation results from both approaches are verified by comparison with results from numerical integration of the discretized equations.  相似文献   

4.
边界约束刚度不确定的结构振动特征值   总被引:2,自引:0,他引:2  
利用摄动法 ,将随机的微分方程和边界条件化为一系列的确定性微分方程和边界条件。运用有限元离散方法 ,推导了统计特征值的二阶摄动近似表达 ,用算例对本文方法进行了说明并和 Monte-Carlo模拟法结果进行了比较  相似文献   

5.
将Koiter理论和奇异摄动理论中的边界层法相结合处理加筋圆柱壳无因次化非线性边界层型Karman-Donnel方程由分支点和边界层导致的双重奇异性,提出外压加筋圆柱壳总体屈曲Koiter—边界层奇异摄动法。从摄动意义上分析边界条件,前屈曲非线性和初始几何缺陷对外压加筋圆柱壳屈曲载荷的影响。算例表明,本方法具有良好的计算效率和计算精度,与数值解相比更能揭示内在影响规律。  相似文献   

6.
7.
In this paper supercritical equilibria and critical speeds of axially moving beams constrained by sleeves with torsion springs are deduced. Transverse vibration of the beams is governed by a nonlinear integro-partial-differential equation. In the supercritical regime, the corresponding static equilibrium equation for the hybrid boundary conditions is analytically solved for the equilibria and the critical speeds. In the view of the non-trivial equilibrium, comparisons are made among the integro-partial-differential equation, a nonlinear partial-differential equation for transverse vibration, and coupled equations for planar motion under the hybrid boundary conditions.  相似文献   

8.
This paper deals with the research of accuracy of differential equations of deflections.The basic idea is as follows.Firstly,considering the boundary effect the meridianmidsurface displacement u=0,thus we derive the deflection differential equations;secondly we accurately prove that by use of the deflection differential equations or theoriginal differential equations the same inner forces solutions are obtained;finally,weaccurately prove that considering the boundary effect the meridian surface displacementu=0 is an exact solution.In this paper we give the singular perturbation solution of thedeflection differential equations.Finally we check the equilibrium condition and prove theinner forces solved by perturbation method and the outer load are fully equilibrated.Itshows that perturbation solution is accurate.On the other hand,it shows again that thedeflection differential equation is an exact equation.The features of the new differential equations are as follows:1.The accuracies of the new differentia  相似文献   

9.
In analysing the geometrically nonlinear problem of an axisymmetrical thin-walled shell, the paper combines the perturbation method with the finite element method by introducing the former into the variational equation to obtain a series of linear equations of different orders and then solving the equations with the latter. It is well-known that the finite element method can be used to deal with difficult problems as in the case of structures with complicated shapes or boundary conditions, and the perturbation method can change the nonlinear problems into linear ones. Evidently the combination of the two methods will give an efficient solution to many difficult nonlinear problems and clear away some obstacles resulted from using any of the two methods solely. The paper derives all the formulas concerning an axisym-metric shell of large deformation by means of the perturbation finite element method and gives two numerical examples,the results of which show good convergence characteristics.  相似文献   

10.
In this article, we consider a class of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary conditions. A uniformly convergent numerical method is constructed via nonstandard finite difference and numerical integration methods to solve the problem. The nonlocal boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ϵ -uniformly convergent.  相似文献   

11.
In existing studies, the well-known Hencky problem, i.e. the large deflection problem of axisymmetric deformation of a circular membrane subjected to uniformly distributed loads, has been analyzed generally on small-rotation-angle assumption and solved by using the common power series method. In fact, the problem studied and the method adopted may be effectively expanded to meet the needs of larger deformation. In this study, the classical Hencky problem was extended to the problem without small-rotation-angle assumption and resolved by using the perturbation idea combining with power series method. First, the governing differential equations used for the solution of stress and deflection in the perturbed system were established. Taking the load as a perturbation parameter, the stress and deflection were expanded with respect to the parameter. By substituting the expansions into the governing equations and corresponding boundary conditions, the perturbation solution of all levels were obtained, in which the zero-order perturbation solution exactly corresponds to the small-rotation-angle solution, i.e. the solution of the unperturbed system. The results indicate that if the perturbed and unperturbed systems as well as the corresponding differential equations may be distinguished, the perturbation method proposed in this study can be extended to solve other nonlinear differential equations, as long as the differential equation of unperturbed system may be obtained by letting a certain parameter be zero in the corresponding equation of perturbed system.  相似文献   

12.
本文提出了固支复合材料各向异性层合圆板受均布横向载荷作用下的满足三维弹性力学基本微分方程和边界条件的解析解答。文中采用一种发展的摄动方法进行求解,板中的每个应力和位移都展开为无量纲厚度参数ε的摄动级数,并采用二维板理论解答作为其相应三维摄动解答的一个基本解的形式,通过摄动方法逐级求解而获得完整的三维解答。文中以解析形式和数值形式给出了高精确度的三维应力和位移结果,结果表明,本文求解三维问题的解析方法是合理有效的。  相似文献   

13.
Equilibria of axially moving beams are computationally investigated in the supercritical transport speed ranges. In the supercritical regime, the pattern of equilibria consists of the straight configuration and of non-trivial solutions that bifurcate with transport speed. The governing equations of coupled planar is reduced to a partial-differential equation and an integro-partial-differential equation of transverse vibration. The numerical schemes are respectively presented for the governing equations and the corresponding static equilibrium equation of coupled planar and the two governing equations of transverse motion for non-trivial equilibrium solutions via the finite difference method and differential quadrature method under the simple support boundary. A steel beam is treated as example to demonstrate the non-trivial equilibrium solutions of three nonlinear equations. Numerical results indicate that the three models predict qualitatively the same tendencies of the equilibrium with the changing parameters and the integro-partial-differential equation yields results quantitatively closer to those of the coupled equations.  相似文献   

14.
Piecewise-linearized methods for the solution of two-point boundary value problems in ordinary differential equations are presented. These problems are approximated by piecewise linear ones which have analytical solutions and reduced to finding the slope of the solution at the left boundary so that the boundary conditions at the right end of the interval are satisfied. This results in a rather complex system of non-linear algebraic equations which may be reduced to a single non-linear equation whose unknown is the slope of the solution at the left boundary of the interval and whose solution may be obtained by means of the Newton–Raphson method. This is equivalent to solving the boundary value problem as an initial value one using the piecewise-linearized technique and a shooting method. It is shown that for problems characterized by a linear operator a technique based on the superposition principle and the piecewise-linearized method may be employed. For these problems the accuracy of piecewise-linearized methods is of second order. It is also shown that for linear problems the accuracy of the piecewise-linearized method is superior to that of fourth-order-accurate techniques. For the linear singular perturbation problems considered in this paper the accuracy of global piecewise linearizat ion is higher than that of finite difference and finite element methods. For non-linear problems the accuracy of piecewise-linearized methods is in most cases lower than that of fourth-order methods but comparable with that of second-order techniques owing to the linearization of the non-linear terms.  相似文献   

15.
The two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to the complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.  相似文献   

16.
We present a new auxiliary variable formulation of high-order radiation boundary conditions for the numerical simulation of waves on unbounded domains. Retaining the flexibility of Higdon’s wave-product conditions, our approach allows arbitrary-order implementations. When applied to the scalar wave equation, the proposed method leads to balanced, symmetrizable systems of wave equations on the boundary. It can also be extended to first-order systems. Corner compatibility conditions are derived for the auxiliary variable equations. They are shown experimentally to lead to stable, accurate results.  相似文献   

17.
The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned–clamped or clamped–pinned boundary conditions, where “pinned” is an abbreviation for “simply supported”. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods — the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped–pinned systems and positive damping of the pinned–clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.  相似文献   

18.
To begin with, in this paper, the displacement governing equations and the boundary conditions of nonsymmetrical large deflection problem of circular thin plates are derived. By using the transformation and the perturbation method, the nonlinear displacement equations are linearized, and the approximate boundary value problems are obtained. As an example, the nonlinear bending problem of circular thin plates subjected to comparatively complex loads is studied.  相似文献   

19.
The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical ‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear differential equations resulting from the balance of momentum and mass, coupled with suitable boundary conditions, are solved numerically either by a finite difference method or by a collocation method with a B-spline function basis. The manner in which the various material parameters affect the structure of the boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturbation approach, as well as a singular perturbation.  相似文献   

20.
Chen  Li-Qun  Wu  Jun  Zu  Jean W. 《Nonlinear dynamics》2004,35(4):347-360
This paper investigates longtime dynamical behaviors of an axially accelerating viscoelastic string with geometric nonlinearity. Application of Newton's second law leads to a nonlinear partial-differential equation governing transverse motion of the string. The Galerkin method is applied to truncate the partial-differential equation into a set of ordinary differential equations. By use of the Poincare maps, the dynamical behaviors are presented based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented for varying one of the following parameter: the mean transport speed, the amplitude and the frequency of transport speed fluctuation, the string stiffness or the string dynamic viscosity, while other parameters are fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号