首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The normoxic polymer gel dosimeter evaluated with X-Ray computed tomography has emerged as a promising tool for measuring the dose delivered during radiotherapy in three dimensions. This study presents the dependence of PAGAT normoxic polymer gel sensitivity to different photon and electron energies. PAGAT polymer gel was prepared under normal atmospheric condition and irradiated with different photon energies of 1.25 MeV from Co-60 and 6 MV and 15 MV from linear accelerator and electron energies of 6, 9, 12, 15, 18 and 21 MeV from linear accelerator. Evaluation of dosimeter was performed with an X-Ray CT scanner. Images were acquired with optimum scanning protocols to reduce the signal-to-noise ratio. The averaged image was subtracted from the unirradiated polymer gel image for background. Central axis depth dose (PDD) curves obtained for each energy and polymer gel dosimeter measurements were in good agreement with diode and film measurements. Hounsfield (HU) – dose response curve for each photon and electron energy were derived from the PDD curve obtained from the gel dosimeter measurements. From the study it was clear that the HU-dose response curve was linear in the region 1–10 Gy. The dosimeter sensitivity was defined as a slope of these linear HU-dose response curves and found that the sensitivity of polymer gel decreases with increase in both photon and electron energies. This trend in dependence of PAGAT gel dosimeter sensitivity to different photon and electron energies was not dosimetrically significant. However, to evaluate the test phantom exposed with one energy using the calibration curve derived at another energy can produce clinically significant error.  相似文献   

2.
Ultrasonic absorption coefficients in aqueous solutions of glycine, L-alanine, imidazole, L-phenylalanine, L-histidine and L-tryptophan at neutral pH were measured in the range from 0.8 to 220 MHz at 25 degrees C. A characteristic ultrasonic relaxation phenomenon was observed only in the solution of L-histidine with a relaxation frequency at around 2 MHz at neutral pH. It was proposed from the concentration independent relaxation frequency and the linear concentration dependence of the maximum absorption per wavelength that the relaxation mechanism was associated with a perturbation of the rotational isomeric equilibrium of the L-histidine molecule. The existence of two rotational isomeric forms of L-histidine in water was examined by semiempirical quantum chemical methods, in order to determine the free energy difference between the two states. The forward and backward rate constants were determined from the relaxation frequency and the energy change. Also, the standard volume change of the reaction was estimated from the concentration dependence of the maximum absorption per wavelength. It was speculated that L-histidine fulfills a specific function among amino acids because of the rotational motion in the molecule, in addition to its well-established acid-base properties.  相似文献   

3.
The earlier report that the frequency dependence of ultrasonic absorption of mammalian testis memicked a single relaxation process is explained as an effect of ultrasonic beam width upon the transient thermoelectric technique. More detailed measurements show that the frequency dependence of the ultrasonic absorption in testis is much the same as the attenuation in other soft tissues, viz., a proportional to f1.1. The earlier finding that testis exhibits an ultrasonic absorption coefficient significantly lower than reported for other tissues is confirmed.  相似文献   

4.
Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h?1 to 0.06 Gy h?1. After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h?1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.  相似文献   

5.
Diffusion of ferric ions in ferrous sulfate (Fricke) gels represents one of the main drawbacks of some radiation detectors, such as Fricke gel dosimeters. In practice, this disadvantage can be overcome by prompt dosimeter analysis, and constraining strongly the time between irradiation and analysis, implementing special dedicated protocols aimed at minimizing signal blurring due to diffusion effects. This work presents a novel analytic modeling and numerical calculation approach of diffusion coefficients in Fricke gel radiation sensitive materials. Samples are optically analyzed by means of visible light transmission measurements by capturing images with a charge-coupled device camera provided with a monochromatic filter corresponding to the XO-infused Fricke solution absorbance peak. Dose distributions in Fricke gels are suitably delivered by assessing specific initial conditions further studied by periodical sample image acquisitions. Diffusion coefficient calculations were performed using a set of computational algorithms based on inverse problem formulation. Although 1D approaches to the diffusion equation might provide estimations of the diffusion coefficient, it should be calculated in the 2D framework due to the intrinsic bi-dimensional characteristics of Fricke gel layers here considered as radiation dosimeters. Thus a suitable 2D diffusion model capable of determining diffusion coefficients was developed by fitting the obtained algorithm numerical solutions with the corresponding experimental data. Comparisons were performed by introducing an appropriate functional in order to analyze both experimental and numerical values. Solutions to the second-order diffusion equation are calculated in the framework of a dedicated method that incorporates finite element method. Moreover, optimized solutions can be attained by gradient-type minimization algorithms. Knowledge about diffusion coefficient for a Fricke gel radiation detector is helpful in accounting for effects regarding elapsed time between dosimeter irradiation and further analysis. Hence, corrections might be included in standard dependence of optical density differences and actual, non-diffused, absorbed dose distributions. The obtained values for ferric ion diffusion coefficient are around 0.65 mm2 h?1, being in good agreement with previous works corresponding to similar Fricke gel dosimeter compositions. Therefore, more accurate 2D and 3D dose mapping might be attained, thus constituting valuable improvements in Fricke gel dosimetry, and parallely a high precision method of diffusion modeling and calculation has been developed.  相似文献   

6.
魏荣爵  张淑仪 《物理学报》1962,18(6):298-304
关于超声波在乙酸乙酯和乙酸甲酯中的吸收问题曾引起了多次热烈的争论,为此,作者采用了行波中的光衍射法做了进一步的实验研究。在实验过程中,特别注意了仪器的精确度问题,并且对许多种吸收系数已知的标准液体进行了多次重复的测量,结果很好地符合于一般的公认值,且误差不超出5%。对于两种乙酸酯,测量的频率范围是3-30Mc,温度保持20℃。测量结果表明,在实验的误差范围内,吸收的实验值很好地落在唯象单弛豫理论所预期的曲线上,弛豫频率对乙酸乙酯约在12Mc附近,对乙酸甲酯约在7Mc附近。并且通过对不同纯度的乙酸乙酯进行重复的测量,表示杂质引起的附加吸收并不影响吸收曲线的特性。因此也就明某些作者测量得到两个弛豫频率的结果是不真实的。作者并认为Karpovich首先提出的旋转异构的理论是适合于解释这两种液体的驰豫吸收的机理的。  相似文献   

7.
将类丁二炔化合物自组装成纳米囊泡后,均匀分散于凝胶载体中,研制出一种新型的辐射变色凝胶剂量计。用电镜观测了囊泡形貌,采用CL-1000型紫外交联仪对凝胶进行辐照,测试并研究了凝胶对紫外辐照的变色响应、辐射后效应、扩散效应等剂量学性能。结果表明:该辐射变色凝胶在5~150mJ/cm2能量密度范围内对紫外线辐照具有良好的响应线性,同时克服了扩散效应、辐射后效应、成型能力差等现有凝胶剂量计的不足。该辐射变色凝胶剂量计适于光学扫描方式测量剂量分布。  相似文献   

8.
Abstract

A new tissue-equivalent substance for the MR dosimetry has been developed. It is composed of water, bovine serum albumin, acrylamide with N,N′-methylene-bis-acrylamide, ammonium ferrous sulphate and sulphuric acid. The elemental composition, mass density, and electron density of the PIRA gel are closer to real tissue than those of dosimeter gels previously investigated. Irradiation causes the changes in the NMR properties of the gel. The dose dependence of NMR longitudinal relaxation rate, R1, is reproducible (less than 2% variation) and is linear up to about 30 Gy, with a slope of 0.023 s?1Gy?1 at 0.48 T. The gel, referred to as PIRA, can be used to obtain accurate radiation dose distribution with conventional magnetic resonance imaging devices.  相似文献   

9.
In a clinical setting, mixed and inconsistent results have been reported using Magnetic Resonance Relaxation imaging of irradiated aqueous polymeric gels as a three-dimensional dosimeter, for dose verification of conformal radiation therapy. The problems are attributed to the difficulty of identifying an accurate dose calibration protocol for each delivered gel at the radiation site in a clinical setting. While careful calibration is done at the gel manufacturing site in a controlled laboratory setting, there is no guarantee that the dose sensitivity of the gels remains invariant upon delivery, irradiation, magnetic resonance imaging and storage at the clinical site. In this study, we have compared three different dose calibration protocols on aqueous polymeric gels for a variety of irradiation scenarios done in a clinical setting. After acquiring the three-dimensional proton relaxation maps of the irradiated gels, the dose distributions were generated using the off-site manufacturer provided calibration curve (Cal-1), the on-site external tube gel calibration (Cal-2) and the new on-site internal normalized gel calibration (Cal-3) protocols. These experimental dose distributions were compared with the theoretical dose distributions generated by treatment-planning systems. We observed that the experimental dose distributions generated from the Cal-1 and Cal-2 protocols were off by 10% to 40% and up to 200% above the predicted maximum dose, respectively. On the other hand, the experimental dose distributions generated from the Cal-3 protocol matched reasonably well with the theoretical dose distributions to within 10% difference. Our result suggests that an independent on-site normalized internal calibration must be performed for each batch of gel dosimeters at the time of MR relaxation imaging in order to account for the variations in dose sensitivity caused by various uncontrollable conditions in a clinical setting such as oxygen contamination, temperature changes and shelf life of the delivered gel between manufacturing and MR acquisitions.  相似文献   

10.
This study describes the application of two in-house developed dosimeters, the Dose Magnifying Glass (DMG) and the MOSkin dosimeter at the Centre for Medical Radiation Physics, University of Wollongong, Australia, for the measurement of CT dose profiles for a clinical diagnostic 16-slice MSCT scanner. Two scanner modes were used; axial mode and helical mode, and the effect of varying beam collimation and pitch was studied. With an increase in beam collimation in axial mode and an increase of CT pitch in helical mode, cumulative point dose at scanner isocentre decreased while FWHM increased. There was generally good agreement to within 3% between the acquired dose profiles obtained by the DMG and the film except at dose profile tails, where film over-responded by up to 30% due to its intrinsic depth dose dependence at low doses.  相似文献   

11.
The nature of water–macromolecule interactions in aqueous model polymers has been investigated using quantitative measurements of magnetization transfer. Cross-linked polymer gels composed of 94% water, 3%N,N′-methylene-bis-acrylamide, and 3% functional monomer (acrylamide, methacrylamide, acrylic acid, methacrylic acid, 2-hydroxyethyl-acrylate, or 2-hydroxyethyl-methacrylate) were studied. Water–macromolecule interactions were modified by varying the pH and specific functional group on the monomer. The magnitudes of the interactions were quantified by measuring the rate of proton nuclear spin magnetization exchange between the polymer matrix and the water. This rate was highly sensitive to the presence of carboxyl side groups on the macromolecule. However, the dependence of the rate on pH was not consistent with simple acid/base-catalyzed chemical exchange, and instead, the data suggest that multiequilibria proton exchange, a wide distribution in surface group pKvalues, and/or a macromolecular structural dependence on pH may play a significant role in magnetization transfer in polymer systems. These model polymer gels afford useful insights into the relevance of chemical composition and chemical dynamics on relaxation in tissues.  相似文献   

12.
The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity.Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-acoess and hazardous.In addition.optical fiber dosimeters are immune to electrical and radio-frequency interference.In this paper,a novel remote optical fiber radiation dosimeter is described.The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL.The measuring range of the dosimeter is from 0.1 to 100 Gy.The equipment is relatively simple and small in size,and has low power consumption.This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions.  相似文献   

13.
The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity. Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-access and hazardous. In addition, optical fiber dosimeters are immune to electrical and radio-frequency interference. In this paper, a novel remote optical fiber radiation dosimeter is described. The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL. The measuring range of the dosimeter is from 0.1 to 100 Gy.  相似文献   

14.
A radiation dose distribution that optimally conforms to the target volume is of major interest for stereotactic radiotherapy. For this purpose treatment plans have to be verified experimentally before transferring to the patient. The requirements regarding dose accuracy and spatial resolution can be fulfilled with tissue equivalent polymer gel dosimeters which offer the possibility to visualize 3D dose distributions. Herewith, dosimetry can be performed by the spin-spin relaxation rate R2 which varies with the absorbed dose. In this work, different MR measurement techniques were evaluated: The standard Carr-Purcell-Meiboom-Gill (CPMG) method, a modified Turbo-Spin-Echo (TSE) sequence, and a modified Turbo-Gradient-Spin-Echo (TGSE) sequence. Experiments were performed both with a homogeneous water phantom and an irradiated polymer gel. The results show that TGSE and especially TSE are suited well for MR polymer gel dosimetry: The acquisition time of both techniques can be reduced in comparison to CPMG by a factor of 5. The accuracy of dose determination for doses between 2 Gy and 13 Gy lies between 5.6% and 2.0% (TSE), 9.0% and 3.2% (TGSE), and 7.9% and 2.7% (CPMG). These investigations show that especially TSE can be handled as a substitute or at least an alternative to CPMG for the verification of treatment plans in stereotactic radiotherapy.  相似文献   

15.
Dosimetry methods outside the target volume are still not well established in radiotherapy. Luminescence detectors due to their small dimensions, very good sensitivity, well known dose and energy response are considered as an interesting approach in verification of doses outside the treated region. The physical processes of thermoluminescence (TL), radiophotoluminescence (RPL) and optically stimulated luminescence (OSL) are very similar and can be described in terms of the energy band model of electron-hole production following irradiation.This work is a review of the main dosimetric characteristics of luminescence detectors which were used in experiments performed by EURADOS Working Group 9 for in-phantom measurements of secondary radiation (scattered and leakage photons). TL LiF:Mg,Ti detectors type MTS-7 (IFJ PAN, Poland), types TLD-100 and TLD-700 (Harshaw), OSL Al2O3:C detectors type nanoDot™ (Landauer Inc.) and RPL rod glass elements type GD-352M (Asahi Techno Glass Coorporation) are described. The main characteristics are discussed, together with the readout and calibration procedures which lead to a determination of absorbed dose to water.All dosimeter types used show very good uniformity, batch reproducibility and homogeneity. For improved accuracy, individual sensitivity correction factors should be applied for TL and OSL dosimeters while for RPL dosimeters there is no need for individual sensitivity corrections.The dose response of all dosimeters is linear for a wide range of doses.The energy response of GD-352M type dosimeters (with Sn filter) used for out-of-field measurements is flat for medium and low energy X-rays.The energy dependence for TLDs is low across the range of photon energies used and the energy correction was neglected. A significant over response of Al2O3:C OSLDs irradiated in kilovoltage photon beams was taken into account. The energy correction factor fen was calculated by using the 2006 PENELOPE Monte Carlo code.With suitable calibration, all dosimeter types are appropriate for out-of-field dose measurements as well as for the in-phantom measurements of radiotherapy MV X-rays beams.  相似文献   

16.
Aerial l-alanine pellet dosimeter is characterized by MiniScope MS300 electron spin resonance spectrometer measurements using Aer'EDE Version 2.0.4. software for dose calculation. The measurement traceability is achieved by Aerial dosimetry laboratory where dosimeters for calibration curve were irradiated by electron beam accelerator. Dose determinations in Aerial are traceable to National Physical Laboratory (NPL). The software used for construction of calibration curve gives also the standard deviation of the residuals of measurements for calibration that is used for dose uncertainty calculation. In aim to determine whether this value can actually be taken as absorbed dose uncertainty during usage of this dosimetry system, alanine dosimeters were irradiated with doses between 5 and 32 kGy by 60Co laboratory source for internal calibration. The dose rate at the places for irradiation was (20 ± 0.5) mGy s−1 determined by Fricke dosimeter. Measurement of each irradiated dosimeter was repeated ten times in ten days. The results of measurements were analyzed to identify the sources of uncertainty, as well as their quantification in evaluation of total measurement uncertainty. In addition to statistical effects, the very low dose rate that was used for the irradiation of alanine dosimeters affects the measurements of absorbed dose, particularly for higher absorbed doses where the measured dose can be up to 3% lower than the real.  相似文献   

17.
PurposeTo evaluate the dosimetric characteristics of a new formulation of MAGIC gel, called MAGIC-f, which contains the addition of 3.3% formaldehyde, resulting in a gel with increased thermal stability.MethodsMAGIC-f gel was prepared and stored in hermetically sealed plastic containers. After irradiation, magnetic resonance images (MRI) were acquired to evaluate dose and dose distribution. Dosimetric characterization was performed by means of depth dose measurements, dose response sensitivity and linearity, temporal stability, energy and dose rate dependence, dose integration using sequential beams, temperature influence during MRI acquisition and dose distribution integrity.ResultsMAGIC-f depth dose measurements are compatible with the dosimetric table data within ±4% uncertainty. The dosimeter's R2 response varies linearly with dose at least from 0 to 6 Gy. The time–course of the sensitivity of the dosimeter following irradiation, indicated stabilization after 2 weeks. The dosimeter's response to irradiation was altered by 6% when increasing the energy from cobalt beams to 10 MV beams. The dose rate dependence of this new formulation of gel dosimeter is small: less than 2.5% for a variation from 200 to 500 cGy/min, and the dependence with the fractionation scheme is about 50% smaller than for standard MAGIC gel. The dependence on scanning temperature was also verified, and the integrity of the dose distribution was confirmed for a period of 90 days.ConclusionsThe results demonstrate the applicability of this new dosimeter in tridimensional dose distribution measurements.  相似文献   

18.
In this work we evaluate the intensity and the spectral shape of the leakage radiation from the built-in beta and alpha sources of a Risø TL/OSL reader. LiF (TLD-100), fluorite-based pellets and Al2O3:C detectors were used in order to determine the dose rate delivered to the dosimeters when the sources are closed. The leakage spectra under both alpha and beta sources were registered with a CdTe semiconductor detector. The spectrum measured under the beta source shows the X-ray beam generated by the interaction of the beta particles with the lead used to shield the source. Besides, the 59.4 keV gamma ray from 241Am was registered under the alpha source. Dose rates from 50 to 100 μGy/h were obtained for the dosimeter positions in the turntable under the beta and the alpha sources with the luminescent dosimeters.  相似文献   

19.
Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements.  相似文献   

20.
Ultrasonic absorption and velocity spectra in bovine serum albumin (BSA) aqueous solutions have been measured at 20 degrees C over the broad frequency range 0.1-1600 MHz in the pH range 1.5-13.2. Five different techniques were used: the plano-concave resonator, plano-plano resonator, pulse-echo overlap, Bragg reflection, and high-resolution Bragg reflection methods. The absorption spectrum at neutral pH was well fitted to the relaxation curve assuming a distribution of relaxation frequency with a high-frequency cutoff and long low-frequency tail. The relaxation behavior was interpreted in terms of various degrees of hydration of BSA molecules. At acid pH's, excess absorption over that at pH 7 was explained by double relaxation. The pH dependences of the relaxation frequency and maximum absorption per wavelength showed that the relaxation at about 200 kHz was related to the expansion of molecules and that at 2 MHz resulted from the proton transfer reaction of carboxyl group. At alkaline pH's, the excess absorption was explained by triple relaxation. The relaxation at about 200 kHz was associated with a helix-coil transition, and the two relaxations at 2 and 15 MHz were attributed to the proton transfer reactions of phenolic and amino groups, respectively. The rate constants and volume changes associated with these processes were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号