首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
An experimental investigation has been carried out to measure the size of nano-aluminium agglomerates emerging from the combustion of nano-aluminized sandwiches and composite solid propellants. Nano-aluminium of median size of 50 nm produced in-house by the electrical wire explosion method is used in these samples. Propellants with different sizes of coarse and fine ammonium perchlorate are considered. Surface features of sandwiches and a propellant whose burning was interrupted by rapid depressurization are examined in a scanning electron microscope. The combustion products of the sandwiches and propellants are quenched close to the burning surface and collected in a quench collection set-up. The surface features of rapid-depressurization quenched sandwiches exhibit relatively large nano-aluminium clusters—of the order a few micrometres—particularly in the binder lamina. Quench-collected nano-aluminium exhibits significant agglomeration, but only a small fraction of the agglomerates are in the 1–3 μm range, except for both the coarse and fine AP particles used in the formulation being large, but even there they do not exceed ∼5 μm in size. This is expected to be benign for reduced smoke propellant applications from exhaust signature point of view, and to decrease the specific impulse losses without sacrificing the energetics of the propellant.  相似文献   

2.
The present study reports the development of a novel technique to quantify binder melt on the surface of the propellant. Non-aluminized AP-HTPB propellants of 86% particulate loading are used to illustrate the technique. Elemental maps of unburnt and extinguished propellant surface are obtained using EDS (Energy Dispersive Spectroscopy). Overlap between the elements is identified and the elemental maps are processed to calculate AP and binder area exposed in unburnt and extinguished samples. The AP area exposed is found to be around 72.3% and 63.3% for unburnt and extinguished samples, respectively, indicating a reduction in AP exposed area with extinguished samples. This has been attributed to the binder melt discussed in literature but never quantified. Simulations have been carried out to analyze and understand the effects of this binder melt. A random packing algorithm is used to simulate propellant packs. Also, a methodology to account for binder melt layer is introduced and is used to capture AP exposed areas. Effect of binder melt in propellants with different solid loading and varying particle size is discussed. It is shown that fine AP particles are more prone to being covered by binder melt than the coarse AP particles. A possible explanation to the behavior of plateau burning propellants observed in literature has been provided through this analysis.  相似文献   

3.
l.IntroductionMetalaluminumisusual1yaddedtosolidrocketpropellantstoincreasethrustandspecificimpu1se.Inaddition,a1uminumoxideparticlesproducedinhightemPeratureburningareacaninturnsuppresshighfrequencycombustioninstabilities.Fromthetheo-reticalcombustionmode1ofsolidproPellants['2j,oxiderandbinder,maincompositionofsolidproPellants,arefirstdecomPOsedandvaPOrizcdintheburningprocere,sothatthealuminumparticlesareexposedonthesurfaceofsolidproPCllants.SomeoftheexPOsedaluminumparticlesescaPerapedl…  相似文献   

4.
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3) (PZT) nano-powder with a perovskite structure was fabricated using sol–gel process. The average crystallite diameter of the PZT powder is calculated to be 23.6 nm and the average agglomerate size is about 200 nm. The 0–3 cement based nano-PZT composites were obtained by pressing the mixture of white cement and the nano-PZT powders under a high pressure followed by steam curing. The properties of the nano-PZT/cement piezoelectric composites have been measured and compared to the PZT/cement composites incorporated with ground coarse PZT particles. The enhanced piezoelectricity of the nano-PZT/cement composites can be attributed to the good connectivity between the nano-PZT particles among the cement matrix.  相似文献   

5.
This study reports the effect of binder melt flow on the burning behaviour, specifically the burning rate controlling sites referred to as the leading edge flames (LEFs), of different types of sandwich propellants, namely, pure, micro-aluminized and nano-aluminized binder. The distance between the LEFs anchored over the lamina interface edges of sandwiches is measured from the combustion images captured under high spatio-temporal resolution. Similarly, the extent of binder melt flow is also measured from the quenched surfaces of sandwiches. The burning rate experiments are performed as well on sandwiches with different middle lamina contents and thicknesses at pressures of 2, 4 and 7 MPa. Two different curing agents are considered to examine the melt flow behaviour of the binder. The curing agent significantly influences the inter-LEF distance mainly in the case of pure binder sandwiches, however, its effect is negligible in aluminized binder sandwiches because of the presence of Al particles that impedes the flow to appreciable extent. Substantial protrusion of the middle lamina relative to the lamina interfaces is observed in micro-aluminized binder sandwiches due to significant accumulation of Al particles on the burning surface. In the case of nano-aluminized binder sandwiches, such protrusion is relatively marginal since nano-Al particles burn quickly, which enables the gas phase flame to locate close to the burning surface, although the extent of Al accumulation is considerably more than in the former case. This causes the nano-aluminized binder sandwiches as a whole to burn significantly faster than the other two cases in the pressure range (<7 MPa) where the LEFs predominantly control the sandwich burning rates.  相似文献   

6.
We examine sandwich propellants constructed from sheets of pure ammonium perchlorate (AP) interleaved with an AP/binder blend, and construct solutions numerically using a code that fully couples gas-phase and solid-phase processes via an unsteady moving interface. This code has been used elsewhere to simulate the burning of random packs of spherical AP particles embedded in binder. We show that for a stoichiometric configuration, variations of the burning rate with α (a measure of the oxygenation of the AP/binder blend) are not monotonic, but display a weak maximum; and variations of the burning rate with sandwich thickness are monotonic for small α, but display a minimum for large α (e.g. α?=?0.5). When the equivalence ratio is varied, the burning rate displays a maximum on the fuel-lean side when α is small, on the fuel-rich side when α is large. These results, and the manner in which the sandwich topography varies with the different parameters, suggest that the configuration could be invaluable for validating the model ingredients and parameter values of heterogeneous propellant combustion codes.  相似文献   

7.
The effective solid propellant burning rate in a rocket depends on surface area and propellant composition. Currently, the surface area geometry in a rocket is limited to what can be practically cast using molds, etc. Additive manufacturing (AM) could allow the production of unique propellant grain geometries, however printing propellants with high solids loadings and viscosities is not readily possible using currently available printers. A new AM direct write system developed recently in our laboratory, is capable of printing visibly low-void propellants with high end mix viscosities into highly resolved geometries. The system was used to print ammonium perchlorate (AP) composite propellants at 85% solids loading using hydroxyl-terminated polybutadiene (HTPB) and a UV-curable polyurethane binder. The change in HTPB propellant viscosity with time after mixing was measured and the microstructure of the strands was evaluated with X-ray tomography scans. The burning rate of printed and cast strands was measured to compare the quality of the strands at high pressure, since propellants with significant voids should catastrophically fail due to flame spreading. The printed samples burned in a planar fashion up to pressures of 10.34 MPa with consistent rates that were comparable to the cast propellants. The HTPB propellant used was not optimized and showed some porosity due to gas generation, but strands printed with the UV binder exhibited extremely low porosity. A strand printed with no gaps in one half and gaps in the other failed catastrophically where intended at high pressure, demonstrating the ability to spatially grade propellants. This new system can produce adequate strands of composite propellant with high solids loadings without the addition of solvents, special binders (low viscosity, thermal softening, etc.), or restricting use to formulations with lower viscosities, and enables the fabrication of complex propellant grain geometries.  相似文献   

8.
Examination of the surface behavior and flame structure of a bimodal ammonium perchlorate (AP) composite propellant at elevated pressure was performed using high speed (5 kHz) planar laser-induced fluorescence (PLIF) from 1 to 12 atm and visible surface imaging spanning 1–20 atm. The dynamics of the combustion of single, coarse AP crystals were resolved using these techniques. It was found that the ignition delay time for individual AP crystals contributed significant to the particle lifetime only at pressures below about 6 atm. In situ AP crystal burning rates were found to be higher than rates reported for pure AP deflagration studies. The flame structure was studied by exciting OH molecules in the gas phase. Two types of diffusion flames were observed above the composite propellant: jet-like flames and v-shaped, inverted, overventilated, flames (IOF) lifted off the surface. While jet-like diffusion flames have been imaged at low pressures and simulated by models, the lifted IOFs have not been previously reported or predicted. The causes for the observed flame structures are explained by drawing on an understanding of the surface topography and disparities in the burning rates of the fuel and oxidizer.  相似文献   

9.
The stability of agglomerates is not only an important material parameter of powders but also of interest for estimating the particle size upon accidental release into the atmosphere. This is especially important when the size of primary particles is well below the agglomerate size, which is usually the case when the size of primary particles is below 100 nm. During production or airborne transportation in pipes, high particle concentrations lead to particle coagulation and the formation of agglomerates in a size range of up to some micrometers. Binding between the primary particles in the agglomerates is usually due to van der Waals forces. In the case of a leak in a pressurized vessel (e.g. reactor, transport pipe, etc.), these agglomerates can be emitted and shear forces within the leak can cause agglomerates to breakup. In order to simulate such shear forces and study their effect on agglomerate stability within the airborne state, a method was developed where agglomerate powders can be aerosolized and passed through an orifice under various differential pressure conditions. First results show that a higher differential pressure across the orifice causes a stronger fragmentation of the agglomerates, which furthermore seems to be material dependent.  相似文献   

10.
Flame propagation of aluminum–ice (ALICE) mixtures is studied theoretically and experimentally. Both a mono distribution of nano aluminum particles and a bimodal distribution of nano- and micron-sized aluminum particles are considered over a pressure range of 1–10 MPa. A multi-zone theoretical framework is established to predict the burning rate and temperature distribution by solving the energy equation in each zone and matching the temperature and heat flux at the interfacial boundaries. The burning rates are measured experimentally by burning aluminum–ice strands in a constant-volume vessel. For stoichiometric ALICE mixtures with 80 nm particles, the burning rate shows a pressure dependence of rb = aPn, with an exponent of 0.33. If a portion of 80 nm particles is replaced with 5 and 20 μm particles, the burning rate is not significantly affected for a loading density up to 15–25% and decreases significantly beyond this value. The flame thickness of a bimodal-particle mixture is greater than its counterpart of a mono-dispersed particle mixture. The theoretical and experimental results support the hypothesis that the combustion of aluminum–ice mixtures is controlled by diffusion processes across the oxide layers of particles.  相似文献   

11.
This paper addresses the development of a pair of layered solid propellants suitable for use in a fast-core gun-propellant charge application. A baseline propellant combination was formulated using RDX particles and thermoplastic-elastomer binder as the major ingredients and CL-20 and nitroguanadine as separate additives for high- and low-energy propellants. The propellant’s burning rate was characterized and insufficient burning-rate ratio between the fast and slow baseline propellants was found. Impetus obtained from the combustion of the combined baseline propellants was also found to be far from the demanded value of 1300 J/g. Several modifications were made by introducing nano-sized aluminum particles and ultra-fine boron particles as well as high-energy oxidizer HNF into the propellant formulation. It was found that the addition of nano-sized aluminum particles can enhance the propellant burning rate only when the propellant contains oxidizers with a positive oxygen balance. Without the presence of positive oxygen balance oxidizer, the exothermic reaction of aluminum and boron particles occurs at a large distance from the burning surface introducing an energy-sink effect. The results obtained from the combustion of the advanced propellants show that an average impetus of 1299 J/g, a flame temperature of 3380 K with a burn rate ratio around 3 between the fast- and the slow-burning layers can be achieved. These conditions are desired for fast-core layered propellant applications. The impact sensitivities of the baseline, intermediate and advanced propellants were measured. The results show that addition of HNF and nano-sized aluminum exhibited improved impact sensitivity at levels that can be considered acceptable for deployment.  相似文献   

12.
Linear polarization of the scattered light by clouds of dust particles and by very large agglomerates deposited on a surface are studied with the PROGRA2 experiment. A first series of measurements use bare silica spheres and black-coated spheres to compare the phase curves obtained by different sizes of agglomerates with varying albedos. The refractive indices are evaluated by comparison with numerical simulations. Then, the maximum polarization, Pmax, on the phase curves for irregular particles is studied as a function of the size of the grains (equivalent diameters from submicron-sized to hundreds of micrometres) and of the agglomerates (from micrometres to centimetres). A minimum value of Pmax is obtained for silica (about 5% for lifted agglomerates and 3% for layers of particles with a grain size of about 50 μm) and amorphous carbon (about 40% for lifted agglomerates and layers with a grain size of about 0.2 μm). For smaller grain sizes, Pmax increases when the grain size decreases. For larger grain sizes, Pmax increases when the grain size increases. Differences between transparent and absorbing materials are underlined. Such studies may be used to interpret remote observations of light scattering by dust particles in cometary comae and Titan's atmosphere.  相似文献   

13.

A numerical framework is presented which examines, for the first time, the burning of two-dimensional aluminized solid propellants. Aluminized composite propellants present a difficult mathematical and numerical challenge because of complex physics and topological changes that occur at the propellant surface. For example, both mathematical models and appropriate numerical solvers must describe the regressing burning surface, aluminium particle detachment and evolution throughout the gas-phase flow field, surface tension effects, ignition and combustion of aluminium particles, phase change effects, agglomeration of aluminium particles, radiation feedback to the propellant surface, to name a few. All of these effects must be modelled in a consistent manner. A numerical framework for which these effects can be included in a rational fashion is currently being developed. This framework includes the level set method to capture the solid–gas interface as well as particle motion in the gas phase. Some preliminary calculations of the two-dimensional combustion field supported by a disc pack with embedded aluminium particles are presented.  相似文献   

14.
The present work reports on an efficient and simple one pot synthetic approach for aluminium nanoflakes and nanoparticles based on the intensification using ultrasound and provides a comparison with the conventional approach to establish the cutting edge process benefits. In situ passivation of aluminium particles with oleic acid was used as the method of synthesis in both the conventional and ultrasound assisted approaches. The aluminium nanoflakes prepared using the ultrasound assisted approach were subsequently dispersed in di-octyl adipate (DOA) and it was demonstrated that a stable dispersion of aluminium nanoflakes into di-octyl adipate (DOA) is achieved. The morphology of the synthesized material was established using the transmission electron microscopy (TEM) analysis and energy dispersive X-ray analysis (EDX) and the obtained results confirmed the metal state and nano size range of the obtained aluminium nanoflakes and particles. The stability of the aluminium nanoflakes obtained using ultrasound assisted approach and nanoparticles using conventional approach were characterized using the zeta potential analysis and the obtained values were in the range of −50 to +50 mV and −100 to +30 mV respectively. The obtained samples from both the approaches were also characterized using X-ray diffraction (XRD) and particle size analysis (PSA) to establish the crystallite size and particle distribution. It was observed that the particle size of the aluminium nanoflakes obtained using ultrasound assisted approach was in the range of 7–11 nm whereas the size of aluminium nanoparticles obtained using conventional approach was much higher in the range of 1000–3000 nm. Overall it was demonstrated that the aluminium nanoflakes obtained using the ultrasound assisted approach showed excellent morphological characteristics and dispersion stability in DOA showing promise for the high energy applications.  相似文献   

15.
We examine the combustion of heterogeneous propellants for which, necessarily, the chemical kinetics is modelled using simple global schemes. Choosing the parameters for such schemes is a significant challenge, one that, in the past, has usually been met using hand-fitting of experimental data (target data) for global burning properties such as steady burning rates, burn-rate temperature sensitivity, and the like. This is an unsatisfactory strategy in many ways. It is not optimal; and if the target set is large and includes such things as stability criteria, or bounds, difficult to implement. Here we discuss the use of a general optimization strategy which can handle large data sets of a general nature. The key numerical tool is a genetic algorithm that uses MPI on a parallel platform. We use this strategy to determine parameters for HMX/HTPB propellants and AP/HTPB propellants. Only one-dimensional target data are used, corresponding to the burning of pure HMX (AP) or a homogenized blend of fine HMX (AP) and HTPB. The goal is to generate kinetics models that can be used in the numerical simulation of three-dimensional heterogeneous propellant combustion. The results of such simulations will be reported in a sequel.  相似文献   

16.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

17.
Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138–354 nm during dispersion. The size effect on the Young’s modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample’s strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138–354 nm and a particle mass fraction of 10 wt%.  相似文献   

18.
This work investigates experimentally and numerically the kinetic effects of water vapor addition on the burning rates of H2, H2/CO mixtures, and C2H4 from 1 atm to 10 atm at flame temperatures between 1600 K and 1800 K. Burning rates were measured using outwardly propagating spherical flames in a nearly constant pressure chamber. Results show good agreement with newly updated kinetic models for H2 flames. However, there is considerable disagreement between simulations and measurements for H2/CO and C2H4 flames at high pressure and high water vapor dilution. Both experiments and simulations show that water vapor addition causes a monotonic decrease in mass burning rate and the inhibitory effect increases with pressure. For hydrogen flames, water vapor addition reduces the critical pressure above which a negative pressure dependence of the burning rate is observed. However, for C2H4 flames, the burning rate always increases with pressure. The results also show that water vapor addition has the same effect as a pressure increase for H2 and H2/CO flames, shifting the reaction zone into a narrower window at higher temperatures. For all fuels, water vapor addition increases OH formation via H2O + O while reducing the overall active radical pool for hydrogen flames. For C2H4, the additional HO2 production pathway through HCO results in a dramatic difference in pressure dependence of the burning rate from that observed for hydrogen. The present work provides important additions to the experimental database for syngas and C0–C2 high pressure kinetic model validations.  相似文献   

19.
A three-dimensional numerical framework is presented that examines the burning of aluminized solid propellants. The numerical solver accounts for heat conduction in the solid, combustion in the gas phase, and coupling of these by means of a level set method. The aluminium particles are treated as heat conducting solid spheres. The aluminium particle detachment process is modelled using level sets, but once the particle becomes free from the surface, its subsequent motion in the gas phase is governed by particle dynamics. Some preliminary calculations of the three-dimensional combustion field supported by a pack with embedded aluminium particles are presented.  相似文献   

20.
The gas-phase sintering kinetics of nickel nanoparticle agglomerates was investigated by a two step electrical mobility classification. The first electrostatic classifier sorted the agglomerated mono-area nickel nanoparticles generated by pulsed laser ablation, and then the subsequent heating process created the sintered nickel nanostructures. The second electrostatic classifier combined with the condensation nucleus counter scanned the shrinkage of the agglomerated mono-area nickel nanoparticles due to the sintering process. The change in the mono-area particle mobility size measured by the electrical mobility classification technique was compared with the results of the existing coalescence model to extract the kinetic parameters for the sintering of nickel particles. The optimum activation energy found in this study was ∼63 kJ/mol, which falls between the diffusion of nickel atoms (∼49 kJ/mol) and the migration and coalescence of nickel particles (∼78 kJ/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号