首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions was studied by single particle experiments and modelling. Experiments of pine and beech wood char conversion were carried out in a single particle combustor under conditions of 1473-1723 K, 0.0-10.5% O2, and 25-42% H2O. A comprehensive progressive char conversion model, including heterogeneous reactions (char oxidation and char gasification with CO2 and H2O), homogeneous reactions (CO oxidation, water-gas shift reaction, and H2 oxidation) in the particle boundary layer, particle shrinkage, and external and internal heat and mass transfer, was developed. The modelling results are in good agreement with both experimental char conversion time and particle size evolution in the presence of oxygen, while larger deviations are found for the gasification experiments. The modelling results show that the char oxidation is limited by mass transfer, while the char gasification is controlled by both mass transfer and gasification kinetics at the investigated conditions. A sensitivity analysis shows that the CO oxidation in the boundary layer and the gasification kinetics influence significantly the char conversion time, while the water-gas shift reaction and H2 oxidation have only a small effect. Analysis of the sensitive parameters on the char conversion process under a typical pulverized biomass combustion condition (4% O2, 13% CO2, 13% H2O), shows that the char gasification reactions contribute significantly to char conversion, especially for millimeter-sized biomass char particles at high temperatures.  相似文献   

2.
Pressurized oxy-fuel combustion of coal in fluidized bed (FB) holds the potential to realize low-cost CO2 capture. However, the fundamental study in this manner is still rare due to the difficult access to the pressurized oxy-FB combustion tests. In this work, the experimental study of single char combustion was firstly conducted in a visualized pressurized FB combustor under various operating conditions. Then an experimentally verified particle-scale char combustion model was developed to reveal the dependence of char combustion on parameters. Results showed that the char conversion was accelerated with the increase of pressure, mainly due to the high oxygen diffusion and char gasification. The gasification played a non-negligible role in pressurized oxy-fuel combustion, especially under high oxygen concentration and bed temperature. Increasing oxygen concentration and bed temperature not only promotes the char oxidation rate and particle temperature, but also increases the gasification rate and the share of char conversion via gasification, resulting in shortening the burnout time of char. In addition, a higher fluidization number lowered both the burnout time and peak temperature of char particle, due to the simultaneous improvement of mass and heat transfer. The influences of char size and fluidization number on char gasification conversion ratio are very weak. In addition, the quantitative analysis of the influence of different operating parameters on the combustion process was obtained by model sensitivity analysis.  相似文献   

3.
This work reports on a study, carried out in a lab-scale fluidized bed apparatus, on fragmentation and attrition of two biomass fuels, namely wood chips and wood pellets, under both combustion and gasification conditions. The aim was to highlight the effect of their different mechanical strength on the fuel particle size distribution and overall carbon conversion. Primary fragmentation tests showed that for wood pellets limited fragmentation occurred during devolatilization, with a fragmentation probability around 30% and particle multiplication factor of 1.4. On the contrary, wood chips were subject to extensive fragmentation as witnessed by large values of the particle multiplication factor and of the fragmentation probability.Results of char attrition experiments carried out under inert, combustion and gasification conditions showed that the carbon loss by elutriation is critical only during gasification, especially for the wood chips char. A gasification-assisted attrition mechanism was proposed to explain the experimental results, similar to the well known combustion-assisted attrition patterns already documented for coal under oxidizing conditions. The higher mechanical strength of the wood pellets appears to be beneficial for reducing carbon elutriation and for obtaining a higher carbon conversion.  相似文献   

4.
The effect of CO on the gasification of a Polish coal-derived char was investigated in a fluidised bed from 1123 to 1248 K. Rate expressions developed from Ergun's mechanism or a modified three-step reaction mechanism, coupled with Cylindrical Pore Interpolation Model (CPIM) to account for the intra-particle mass transfer, were developed to predict gasification and the effect of CO. Compared to the Ergun's rate expression, the three-step expression has an extra term for pco, making the inhibition effect of CO more pronounced. The agreement between experimental and numerical results was satisfactory for both models simulating gasification by CO2/N2. Then, when CO (1% or 3%) was intentionally introduced in the feed gas (CO2/N2), the gasification rates significantly decreased. It was found that the model based on Ergun's mechanism over-estimated the gasification rate, while the results from the model with the three-step mechanism agreed with the experimental data.  相似文献   

5.
This work presents a new method of measuring the CO/CO2 ratio at the surface of carbon particles during combustion. This thermogravimetric method deduces the ratio of CO to CO2 by comparing the rate of consumption of carbon with the rate of oxidation of an external reference material with fast oxidation kinetics, in this case Cu. The method is useful when combustion is controlled by external mass transfer, commonly encountered in large-scale processes. The viability of this method has been demonstrated experimentally with graphite and a lignite char. It was found that in an atmosphere of ~ 1% O2, the graphite produced CO2 between 700 and 900 °C whilst the lignite char produced a mixture of CO and CO2 between 700 and 800 °C with the proportion of CO increasing with temperature, and above 850 °C, only CO was produced. It was also found that for this particular lignite char, the ratio of CO/CO2 increased with decreasing pO2 in the environment.  相似文献   

6.
A new experimental technique is proposed to measure the product CO/CO2 ratio at the surface of spherical char particles during fluidized bed combustion. It is based on the measurement of the burning rate of a single char particle under low oxygen concentration conditions and on the use of an accurate prediction of the particle Sherwood number. This technique was applied to spherical char particles obtained from a bituminous coal which is characterized by a low attrition and fragmentation propensity. The product CO/CO2 ratio was measured at a bed temperature of 850 °C and at a fluidization velocity of 0.3 m/s in a lab-scale apparatus operated with a bed of 0.5–0.6 mm sand. The char particle size was varied between 2 and 7 mm and the inlet oxygen concentration between 0.1% and 2.0%. Results showed that under the experimental conditions investigated carbon was mostly oxidized to CO2 within the particle boundary layer, with a maximum fraction of carbon escaping as CO of 10–20% at the lowest oxygen concentrations and largest particle sizes.  相似文献   

7.
CO2 reforming of methane was studied over a bed of coal char in a fixed bed reactor at temperatures between 1073 and 1223 K and atmospheric pressure with a feed composition of CH4/CO2/N2 in the ratio of 1:1:8. Experimental results showed that the char was an effective catalyst for the production of syngas with a maximum H2/CO ratio of one. It was also found that high H2/CO ratios were favoured by low pressures and moderate to high temperatures. These results are supported by thermodynamic calculations. A mechanism of seven overall reactions was studied and three catalytic reactions of CH4 decomposition, char gasification and the Boudouard reaction was identified as being of major importance. The first reaction produces carbon and H2, the second consumes carbon, and the third (the Boudouard reaction) converts CO2 to CO while consuming carbon. Equilibrium calculations and experimental results showed that any water present reacts to form H2 and carbon oxides in the range of temperatures and pressures studied. Carbon deposition over the char bed is the major cause of deactivation. The rate of carbon formation depends on the kinetic balance between the surface reaction of the adsorbed hydrocarbons with oxygen containing species and the further dissociation of the hydrocarbon.  相似文献   

8.
Two kinds of char were prepared from a lignite by fast pyrolysis using a drop tube furnace and by slow pyrolysis using a fixed-bed furnace at the temperature of 1273 K. Scanning electron microscopy, X-ray diffractometry and the BET method were employed to characterize char properties. The chars were gasified with CO2, H2O and their mixtures in a thermogravimetric analyzer (TGA) system to investigate gasification kinetics and derive the rate expression. To validate the gasification rate equation derived from TGA, a fluidized-bed gasification experiment was also carried out. The results showed that both fast-char and slow-char were mainly composed of dense char. The shrinking core model was applicable to predict both gasification of fast-char and slow-char. It was found that the char gasification rate in the mixtures of CO2 and H2O was obviously lower than the sum of the two rates of the char independently reacting with CO2 and H2O but higher than the rate of each independent reaction, for both the fast-char gasification and slow-char gasification. Both of the results from the TGA and the fluidized-bed reactor showed that char-H2O reaction was independent on char-CO2 reaction, while char-CO2 reaction was inhibited by char-H2O reaction.  相似文献   

9.
The transformation and fate of sulphur (S) in a spent tyre pyrolysis char during CO2 gasification were studied by following the S species and contents using X-ray photoelectron spectroscopy (XPS). The spent tyre pyrolysis char (particle size fraction ≤150 µm), without and with 1 M HCl acid washing to remove inorganic S, were gasified in a fixed bed reactor. The effect of temperature (850, 950, 1050 °C), reaction time (1, 2, 3, 6 h) and CO2 concentration (33.3, 50.0, 66.7 vol% in N2) on the S species in the char samples were investigated. The main S species in the spent tyre pyrolysis char were ZnS and aliphatic sulphide. After CO2 gasification, aliphatic sulphide, thiophene, sulphoxide and sulphone became the dominant organic S while ZnS and CaSO4 were the main inorganic S. The percentage of total S increased with increasing gasification temperature, time and CO2 concentration. The content of organic S increased with increasing gasification temperature and time, while, the content of inorganic S decreased. Increasing CO2 concentration had negligible effect on the content of organic S but led to significant reduction in the content of inorganic S since ZnS reacted with CO2 to produce ZnO and SO2. Aliphatic sulphide, sulphoxide and sulphone were shown to have transformed to more stable thiophene. ZnS decomposed to release SX at > 900 °C while CaSO4 reacted with CO and carbon to produce COS. Both SX and COS reacted with the organic matrix in the char to form sulphoxide and sulphone.  相似文献   

10.
For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO2 levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO2 gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO2 reaction rates for a high-volatile bituminous coal char particle (130 μm diameter) reacting in several O2 concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO2, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O2 concentration at the particle surface. The CO2 gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO2 gasification reaction increases the char conversion rate for combustion at low O2 concentrations, but decreases char conversion for combustion at high O2 concentrations. These calculations give new insight into the complexity of the effects from the CO2 gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.  相似文献   

11.
The effect of pyrolysis conditions on char reactivity has been studied using Raman spectroscopy. This paper reports on the relationship between the properties of biomass char and the gasification rate. The gasification kinetics of biomass char have been revealed by measuring the rate of weight loss during its reaction with CO2 as a function of temperature. First-order kinetic rate constants are determined by fitting the weight loss data using a random pore model. The relationship between the char structure and CO2 gasification reactivity was investigated in the range of 15–600 °C/min at a constant pyrolysis pressure (0.1 MPa), and 0.1–3.0 MPa at a constant heating rate (15 °C/min). The experimental results reveal that the reactivity of biomass char is determined by the pyrolysis condition. The CO2 gasification rates in char generated at 0.1 MPa exhibited approximately twice the values as compared to those obtained at 3 MPa. This is because the uniformity of the carbonaceous structure increases with the pyrolysis pressure. The uniformity of carbonaceous structures would affect the CO2 gasification reactivity, and the decreasing uniformity would lead to the progression of cavities on the char surface during the CO2 gasification process. The gasification rate of biomass char increases with the heating rate at pyrolysis. This is due to the coarseness (surface morphology) of biomass char and rough texture, which increases with the heating rate.  相似文献   

12.
The formation of PM10 (particles less than or equal to 10 μm in aerodynamic diameter) during char combustion in both air-firing and oxy-firing was investigated. Three Chinese coals of different ranks (i.e., DT bituminous coal, CF lignite, and YQ anthracite) were devolatilized at 1300 °C in N2 and CO2 atmosphere, respectively, in a drop tube furnace (DTF). The resulting N2-chars and CO2-chars were burned at 1300 °C in both air-firing (O2/N2 = 21/79) and oxy-firing (O2/CO2 = 21/79). The effects of char properties and combustion conditions on PM10 formation during char combustion were studied. It was found that the formation modes and particle size distribution of PM10 from char combustion whether in air-firing or in oxy-firing were similar to those from pulverized coal combustion. The significant amounts of PM0.5 (particles less than or equal to 0.5 μm in aerodynamic diameter) generated from combustion of various chars suggested that the mineral matter left in the chars after coal devolatilization still had great contributions to the formation of ultrafine particles even during the char combustion stage. The concentration of PM10 from char combustion in oxy-firing was generally less than that in air-firing. The properties of the CO2-chars were different from those of the N2-chars, which was likely due to gasification reactions coal particles experienced during devolatilization in CO2 atmosphere. Regardless of the combustion modes, PM10 formation in combustion of N2-char and CO2-char from the same coal was found to be significantly dependent on char properties. The difference in the PM10 formation behavior between the N2-char and CO2-char was coal-type dependent.  相似文献   

13.
The understanding of the pyrolysis behavior of petroleum coke (PC), a by-product of oil refining, is very critical to its energy utilization. Different from most previous work, this investigation particularly focused on PC pyrolysis at high temperatures > 1273 K. The CO2 gasification reactivity of in-situ char, rather than quenched char, was evaluated and correlated to PC pyrolysis behavior at different temperatures. A Chinese PC with sizes below 100 μm was tested on a high-temperature thermogravimetric analyser (TGA). Three sets of tests were carried out for different purposes. The first set was to simultaneously obtain sample mass loss and gas evolution data during pyrolysis through thermogravimetry-mass spectrometry (TG-MS). The second set aimed to collect char samples for subsequent analyses by scanning electron microscopy (SEM) and Raman spectrometry. The third set was to evaluate in-situ char-CO2 gasification reactivity through the TGA. The results showed that, in addition to the commonly-observed primary pyrolysis stage at low temperatures, there was a secondary PC pyrolysis stage at high temperatures > 1300 K. In this process, the gases such as HCN, CO2 and SO2 were significantly released. The observed changes of char morphology suggested a four-staged thermoplastic transformation of the PC during pyrolysis, which has little been discussed previously. At different stages, i.e. softening, plasticizing, resolidification and graphitization, the rate of carbon ordering was different. The in-situ char-CO2 gasification reactivity was found to first increase, then decrease and finally increase again with increasing temperature. Such changes coincided with the thermoplastic state of the pyrolyzed char, but not with the changes of char surface area or carbon ordering. The obtained knowledge is new and highlights the potentially important roles of char thermoplastic state in determining its reactivity towards CO2.  相似文献   

14.
Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.  相似文献   

15.
During coal combustion, char chemical reaction is the slowest step, particularly in the last burnout stage, where the char consists of small amounts of carbon in a predominant ash framework. Existing kinetics models tend to deviate from experimental measurements of late char burnout due to the incomplete treatment of ash effects. Ash can improve pore evolution through vaporization, hinder oxygen transport by forming an ash film, and reduce active carbon sites and available surface per unit volume by penetrating into the char matrix. In this work, a sophisticated kinetics model, focusing on these three ash evolution mechanisms (ash vaporization, ash film, and ash dilution) during pulverized coal (PC) char combustion, is developed by integrating them into a thorough mechanistic picture. Further, a detailed comparison of the three distinct ash effects on PC char conversion during air (O2/N2) and oxy-fuel (O2/CO2) combustion is performed. For the modeled coal, the mass of ash vaporization is approximate 3 orders less than the mass of ash remaining, which participates in ash dilution and ash film formation, both in O2/N2 and O2/CO2 atmospheres. The influence of these phenomena on burnout time follows the order: ash dilution > ash film > ash vaporization. The influence of ash vaporization on burnout time is minor, but through interactions with the ash dilution and ash film forming processes it can have an impact at high extents of burnout, particularly in O2/CO2 atmospheres. In O2/N2 atmospheres the residual ash predominately exists as an ash film, whereas it mainly exists as diluted ash in the char matrix in O2/CO2 atmospheres. The residual ash particle is encased by a thick film when the ash film forming fraction is high (low ash dilution fraction). These results provide in-depth insights into the conversion of PC char and further utilization of the residual ash.  相似文献   

16.
Solid fuel samples with different carbon contents are gasified by successively subjecting to pyrolysis in argon and oxidation in carbon dioxide at various temperatures to determine the rate of the chemical reactions and the activation energy required for simulating and optimizing the operation of gas generators. The samples were prepared from bituminous coal, lignite, and anthracite of the Kuznetsk and Kansk-Achinsk coal basins. The gasification of coal char samples in a carbon dioxide medium at 900–1200°C is analyzed by thermogravimetry. The temperature dependences of the weight change rate and gasification time of coal char samples are measured and used to calculate the preexponential factor and activation energy of the carbon oxidation reaction. It is found that, with increasing oxidizing medium temperature from 900 to 1200°C, the gasification time of the coal char samples obtained from anthracite and bituminous coal decrease 8- and 22-fold, respectively. A physicomathematical model of coal char gasification in a fixed bed, with the oxidizing gas diffusing through the ash layer formed, is proposed.  相似文献   

17.
The various coupled and transient processes controlling the gasification mechanism and burnout time of carbon particles were analyzed, with emphasis on the influence of the initial particle size for the size range that is relevant to the firing of pulverized solid fuels. The formulation recognizes the suppression of the envelop gas-phase CO flame because of the small particle size, and allows for the three surface reactions of C + O2, C + CO2, and C + H2O, as well as radiation heat transfer because of the potential high temperature attainable by the carbon particle. Results show that while the particle temperature continuously increases during the combustion of sufficiently large particles, the gasification actually consists of three phases: namely an initial particle heating period, an activation period for the surface reactions, and a diffusion-controlled, d2-law gasification period characterized by perpetually maximized surface reaction rates in spite of the continuously decreasing particle size. Radiation heat transfer is shown to have the same magnitude as those of reaction heat release and conduction, and actively affects the particle gasification response. For smaller particles, activation of the surface reactions is either substantially delayed subsequent to the initial heating period, or is completely suppressed, which respectively leads to either long burnout times or incomplete particle gasification. Influences due to the ambient oxygen concentration and the presence of CO2 and H2O as the oxidizer were also studied. Comparisons with literature experimental data show adequate agreement.  相似文献   

18.
In this paper, a previous model for char surface area change during atmospheric coal pyrolysis was modified to include the effect of particle swelling and gasification to predict the N2 adsorption specific surface area of high-volatile bituminous char generated at high pressures with or without gasification. A correlation between the change of char surface area and P0ΔVP/mcm (the ratio of the expansion work for particle swelling to the mass of metaplast cross-linked with coal matrix) was developed and analyzed. The number of the defect regions generated by gasification was considered in calculating adsorption sites quantitatively. Particle swelling opens (at P0ΔVP/mcm<1350 J/kg) and then compresses (at 1350 J/kg <P0ΔVP/mcm<10,000 J/kg) the space between metaplast clusters, making the N2 adsorption specific surface area of char increase first and then decrease. After the gaps between metaplast clusters are filled, the specific surface area changes are minimal. Gasification generates new defect regions in clusters and reduces the clusters in char, making the specific surface area of char first increase and then decrease.  相似文献   

19.
Coal combustion in O2/CO2 environment was examined with a bituminous coal in which the gas-phase and char combustion stages were considered separately. The effects of temperature (1000–1300 °C) and the excess oxygen ratio λ (0.6–1.4) on the conversion of volatile-N and char-N to NOx were studied. Also, the reduction of recycle NOx by fuel-N was investigated under various conditions. The results show that fuel-N conversion to NO in O2/CO2 is lower than that in O2/N2. In O2/CO2 atmosphere, the volatile-N conversion ratios vary from 1–7% to 15–24% under fuel-rich and fuel-lean conditions, respectively. The char-N conversion ratios are 11–28% and 30–50% under fuel-rich and fuel-lean conditions, respectively. The influences of temperature on the conversion of volatile-N to NO under fuel-rich and fuel-lean conditions are contrary. A significant difference for char-N conversion in fuel-rich and fuel-lean conditions is observed. The experimental data of recycle NO reduction indicate that the reduction of recycle NO by gas-phase reaction can be enhanced by volatile-N addition in fuel-lean condition at high temperature, while in fuel-rich condition, the volatile-N influence cancelled out and the overall impact is small. NO/char reaction competes with the conversion of fuel-N to NO at higher temperatures.  相似文献   

20.
The effect of steam and sulphur dioxide on CO2 capture by limestone during calcium looping was studied in a novel lab-scale twin fluidised bed device (Twin Beds – TB). The apparatus consists of two interconnected batch fluidised bed reactors which are connected to each other by a duct permitting a rapid and complete pneumatic transport of the sorbent (limestone) between the reactors. Tests were carried out under typical calcium looping operating conditions with or without the presence of H2O and/or SO2 during the carbonation stage. Carbonation was carried out at 650°C in presence of 15% CO2, 10% steam (when present) and by investigating two SO2 levels, representative of either raw (1500?ppm) or pre-desulphurised (75?ppm) typical flue gas derived from coal combustion. The sorbent used was a reactive German limestone. Its performance was evaluated in terms of CO2 capture capacity, sulphur uptake, attrition and fragmentation. Results demonstrated the beneficial effect of H2O and the detrimental effect of SO2 on the CO2 capture capacity. When both species were simultaneously present in the gas, steam was still able to enhance the CO2 capture capacity even outweighing the negative effect of SO2 at low SO2 concentrations. A clear relationship between degrees of Ca carbonation and sulphation was observed. As regards the mechanical properties of the sorbent, both H2O and SO2 hardened the particle surface inducing a decrease of the measured attrition rate, that was indeed always very low. Conversely, the fragmentation tendency increased in presence of H2O and SO2 most likely due to the augmented internal stresses within the particles. Clear bimodal particle size distributions for in-bed sorbent fragments were observed. Microstructural scanning electron microscope and porosimetric characterisations aided in explaining the observed trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号