首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A new photoswitch for DNA hybridization involving para‐substituted azobenzenes (such as isopropyl‐ or tert‐butyl‐substituted derivatives) with L ‐threoninol as a linker was synthesized. Irradiation of the modified DNA with visible light led to dissociation of the duplex owing to the destabilization effect of the bulky substituent on the trans‐azobenzene. In contrast, trans‐to‐cis isomerization (UV light irradiation) facilitated duplex formation. The direction of this photoswitching mode was entirely reversed relative to the previous system with an unmodified azobenzene on D ‐threoninol whose trans form turned on the hybridization, and cis form turned it off. Such reversed and reversible photoswitching of DNA hybridization was directly demonstrated by using fluorophore‐ and quencher‐attached oligonucleotides. Furthermore, it was revealed that the cis‐to‐trans thermal isomerization was greatly suppressed in the presence of the complementary strand owing to the formation of the more‐stable duplex in the cis form.  相似文献   

2.
Photoinduced phase transitions caused by photochromic reactions bring about a change in the state of matter at constant temperature. Herein, we report the photoinduced phase transitions of crystals of a photoresponsive macrocyclic compound bearing two azobenzene groups ( 1 ) at room temperature on irradiation with UV (365 nm) and visible (436 nm) light. The trans/trans isomer undergoes photoinduced phase transitions (crystal–isotropic phase–crystal) on UV light irradiation. The photochemically generated crystal exhibited reversible phase transitions between the crystal and the mesophase on UV and visible light irradiation. The molecular order of the randomly oriented crystals could be increased by irradiating with linearly polarized visible light, and the value of the order parameter was determined to be ?0.84. Heating enhances the thermal cis‐to‐trans isomerization and subsequent cooling returned crystals of the trans/trans isomer.  相似文献   

3.
An understanding of the photoisomerization mechanism of molecules bound to a metal surface at the molecular scale is required for designing photoswitches at surfaces. It has remained a challenge to correlate the surface structure and isomerization of photoswitches at ambient conditions. Herein, the photoisomerization of a self‐assembled monolayer of azobenzene‐thiol molecules on a Au surface was investigated using scanning tunneling microscopy and tip‐enhanced Raman spectroscopy. The unique signature of the cis isomer at 1525 cm?1 observed in tip‐enhanced Raman spectra was clearly distinct from the trans isomer. Furthermore, tip‐enhanced Raman images of azobenzene thiols after ultraviolet and blue light irradiation are shown with nanoscale spatial resolution, demonstrating a reversible conformational change. Interestingly, the cis isomers of azobenzene‐thiol molecules were preferentially observed at Au grain edges, which is confirmed by density functional theory.  相似文献   

4.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

5.
Azobenzenethiol molecules carrying different para‐substituents were used to form mixed monolayers with n‐alkanethiol molecules on Au and Ag surfaces. UV‐ and visible light irradiation of the surfaces resulted in reversible alternation of contact angle and characteristic infrared absorption peak intensities, as well as the work function of the metal surfaces. The alternations can be correlated with the cis‐trans isomerization of the azobenzene moieties at the surface. Electron transport from the metal electrode to a redox center in a contacting solution was measured and analyzed based on the change in the work function of the electrode as well as the monolayer film structure upon isomerization.  相似文献   

6.
Stimuli‐responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH‐ and temperature‐responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer‐by‐layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly.  相似文献   

7.
The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene–oligoglycerol conjugates in different environments is reported. Through the formation of host–guest complexes with surface immobilized β‐cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light‐illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half‐lives of the cis isomers were calculated for different environments. Surprisingly, the half‐lives on gold nanoparticles were significantly smaller compared to planar gold surfaces.  相似文献   

8.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Novel photoresponsive linear, graft, and comb‐like copolymers with azobenzene chromophores in the main‐chain and/or side‐chain are prepared via a sequential ring‐opening metathesis polymerization (ROMP) and head‐to‐tail acyclic diene metathesis (ADMET) polymerization in a one‐pot procedure using Grubbs ruthenium‐based catalysts. The diluted solutions of these as‐prepared copolymers containing azobenzene chromophores exhibit photochemical transcis isomerization under the irradiation of UV light, followed by their cistrans back‐isomerization in visible light. The rates of photoisomerization are found to be slower than those of back‐isomerization, and the rate for the comb‐like copolymer is found to be from 3 to 7 times slower than that obtained for the linear or graft copolymer. This is ascribed to the differences in structure of the copolymers and the specific location of azobenzene chromophores in the copolymer, which favor a side‐chain graft structure.

  相似文献   


10.
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the transcis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
In water, synthetic amphiphiles composed of a photoresponsive azobenzene moiety and an oligoglycine hydrogen‐bonding moiety selectively self‐assembled into nanotubes with solid bilayer membranes. The nanotubes underwent morphological transformations induced by photoisomerization of the azobenzene moiety within the membranes, and the nature of the transformation depended on the number of glycine residues in the oligoglycine moiety (i.e., on the strength of intermolecular hydrogen bonding). Upon UV‐light irradiation of nanotubes prepared from amphiphiles with the diglycine residue, trans‐to‐cis isomerization induced a transformation from nanotubes (inner diameter (i.d.) 7 nm), several hundreds of nanometers to several tens of micrometers in length, to imperfect nanorings (i.d. 21–38 nm). The cis‐to‐trans isomerization induced by continuous visible‐light irradiation resulted in the stacking of the imperfect nanorings to form nanotubes with an i.d. of 25 nm and an average length of 310 nm, which were never formed by a self‐assembly process. Time‐lapse fluorescence microscopy enabled us to visualize the transformation of nanotubes with an i.d. of 20 nm (self‐assembled from amphiphiles with the monoglycine residue) to cylindrical nanofibers with an i.d. of 1 nm; shrinkage of the hollow cylinders started at the two open ends with simultaneous elongation in the direction of the long axis.  相似文献   

12.
The azobenzene unit used as a photochemically and thermally switchable linker in the assembly of a bis‐calix[4]pyrrole receptor provides a means to modulate the binding of bis‐carboxylates of significant biological importance in cancer research. Conversely, the complexation of different bis‐anionic guests has significant kinetic effects on both the photochemical and thermal trans/cis isomerization of the azobenzene unit.  相似文献   

13.
Ultrathin molecular assemblies of new ionene polysoaps bearing azobenzene units in the main chain and anionic polyelectrolytes have been prepared upon electrostatic layer-by-layer adsorption on charged substrates. Ionenes could be adsorbed in the trans- and cis-rich state of their azobenzene units. Use of cis-rich polymer was found to be advantageous because up to three times more material could be adsorbed per dipping cycle as from the solution of the trans polymer. Alternate irradiation with UV (<370 nm) and visible (>450 nm) light allowed to switch between the trans isomer and the cis-rich photostationary state. Photoconversion of ionenes in multilayers is lower than in solution, but higher than for multilayers of azobenzene bolaamphiphiles reported recently.  相似文献   

14.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

15.
Grating waveguide couplers with a flat surface were fabricated in an azobenzene liquid‐crystalline polymer film by holographic lithography using Ar+ laser beams at 488 nm. When a probe beam at 633 nm was incident to one grating of a grating waveguide coupler, the beam propagated in the waveguide and an output beam came out from the other grating with the throughput coupling efficiency of ≈5%. Upon irradiation of the film between two gratings with UV light to cause transcis photoisomerization of the azobenzene moiety, the intensity of the output beam was repeatedly switched. It was found that the alternating irradiation at 366 and 436 nm induced reversible changes in the intensity of the guided probe beam.

  相似文献   


16.
Photoinduced reversible solid‐to‐liquid transitions of azobenzene‐containing materials can control adhesion. Photoswitchable adhesives based on azobenzene‐containing small molecules and polymers are under intense investigation. The melting points or glass transition temperatures of such azobenzene‐containing materials in trans and cis forms are above and below room temperature, respectively. Photoswitching of these materials results in reversible transcis isomerization and solid‐to‐liquid transitions. The solid trans azobenzene‐containing materials have strong adhesion and the liquid cis azobenzene‐containing materials have weaker adhesion. In this Minireview, we introduce adhesives based on azobenzene‐containing small molecules and polymers. The remaining challenges and perspectives in the field of photoswitchable adhesives using azobenzene‐containing materials are also discussed.  相似文献   

17.
Heating and cooling can induce reversible solid‐to‐liquid transitions of matter. In contrast, athermal photochemical processes can induce reversible solid‐to‐liquid transitions of some newly developed azobenzene compounds. Azobenzene is photoswitchable. UV light induces trans‐to‐cis isomerization; visible light or heat induces cis‐to‐trans isomerization. Trans and cis isomers usually have different melting points (Tm) or glass transition temperatures (Tg). If Tm or Tg of an azobenzene compound in trans and cis forms are above and below room temperature, respectively, light may induce reversible solid‐to‐liquid transitions. In this Review, we introduce azobenzene compounds that exhibit photoinduced reversible solid‐to‐liquid transitions, discuss the mechanisms and design principles, and show their potential applications in healable coatings, adhesives, transfer printing, lithography, actuators, fuels, and gas separation. Finally, we discuss remaining challenges in this field.  相似文献   

18.
A series of polythiophene derivatives with substantially higher azobenzene contents in the side chains were prepared via copolymerization of 3‐hexylthiophene with four different types of 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate. The alkyl spacers with different lengths, i.e. butyl, hexyl, octyl and undecyl groups were used between the azobenzene group and the thiophene ring. The compositions, structures and thermal properties of these polythiophene derivatives were characterized. The structural dependence of photoluminescent emission, photochromic behavior of these copolymers were systematically studied and compared with poly(3‐hexylthiophene). The results show that the azobenzene substitution renders the polythiophene some interesting optical properties that can be modulated by UV light irradiation. In the azobenzene modified polythiophene, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced transcis isomerization of the azobenzene pendant groups has a significant effect on photoluminescent emission, particularly when short spacers are used between azobenzene groups and the main chain. However, the effect becomes less prominent when longer spacers are used between the azobenzene group and the main chain. Furthermore, UV irradiation of the copolymers also resulted in an increase in intensity and broadening of bandwidth for the absorption peak associated with the polythiophene backbones. Again the magnitude of intensity changes upon UV irradiation were found to be dependent on the spacer length between the azobenzene group and polythiophene main chain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Novel water‐soluble triply‐responsive homopolymers of N,N‐dimethylaminoethyl methacrylate (DMAEMA) containing an azobenzene moiety as the terminal group were synthesized by atom transfer radical polymerization (ATRP) technique. The ATRP process of DMAEMA was initiated by an azobenzene derivative substituted with a 2‐bromoisobutyryl group (Azo‐Br) in the presence of CuCl/Me6TREN in 1,4‐dioxane as a catalyst system. The molecular weights and their polydispersities of the resulting homopolymers (Azo‐PDMAEMA) were characterized by gel permeation chromatography (GPC). The homopolymers are soluble in aqueous solution and exhibit a lower critical solution temperature (LCST) that alternated reversibly in response to Ph and photoisomerization of the terminal azobenzene moiety. It was found that the LCST increased as pH decreased in the range of testing. Under UV light irradiation, the trans‐to‐cis photoisomerization of the azobenzene moiety resulted in a higher LCST, whereas it recovered under visible light irradiation. This kind of polymers should be particularly interesting for a variety of potential applications in some promising areas, such as drug controlled‐releasing carriers and intelligent materials because of the multistimuli responsive property. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2564–2570, 2010  相似文献   

20.
An azobenzene group was linked to β‐cyclodextrin via a histidine spacer ( 1 ) to produce a photoresponsive catalyst. The ester hydrolysis of p‐nitrophenyl acetate, Boc‐L ‐alanine‐p‐nitrophenyl ester and Boc‐D ‐alanine‐p‐nitrophenyl ester was examined in the presence of trans‐ 1 or cis‐ 1 . In the case of cis‐ 1 , the cyclodextrin cavity was used as the substrate binding site during imidazole‐catalyzed ester hydrolysis. This was not possible in the case of trans‐ 1 due to the inclusion of the trans‐azobenzene moiety in the cyclodextrin cavity. Consequently, the catalytic mechanism switches in an on‐off fashion on UV irradiation, associated with the conversion of the azobenzene moiety of 1 from trans to cis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号