首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Selective covalent surface modification of single‐walled carbon nanotubes (SWNTs) is of great importance to various carbon nanotube‐based applications as it might offer an alternative method for enriching metallic and semiconducting nanotubes. Herein, we report on the surface modification of SWNTs through 1,3‐dipolar cycloaddition of 3‐phenyl‐phthalazinium‐1‐olate, which is a stable and reactive azomethine imine. For this reaction, microwave heating was found to be more efficient than conventional and solvent‐free heating. The sensitivity of cycloaddition to the molecular structure of SWNTs was probed using resonance Raman spectroscopy with three different laser excitations. Based on the obtained results, azomethine imine addition to the surface of nanotubes is selective for metallic and large‐diameter semiconducting SWNTs. Thermogravimetric analysis coupled with mass spectrometry showed that fragments released at high temperatures corresponded to the phenylphthalazine group, thus confirming the covalent surface functionalization. Modified SWNTs were further characterized by X‐ray photoelectron and UV/Vis‐NIR spectroscopies.  相似文献   

2.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

3.
温倩  骞伟中  魏飞 《催化学报》2008,29(7):617-623
研究了在以甲烷化学气相沉积法制备单壁碳纳米管的过程中高温煅烧预处理(900℃煅烧10h)对Mo改性Fe/MgO催化剂的作用.发现这种预处理有利于Fe在催化剂中的稳定和分散,从而制备出管径均一的单壁碳纳米管.采用能谱元素分析、高分辨透射电镜、X射线衍射、比表面积测量、拉曼光谱和热重分析对样品进行了表征.结果表明,在碳纳米管生长的过程中,铁元素在催化剂表面富集,单壁碳纳米管生长于富集铁的纳米颗粒上,并存在碳管直径与铁颗粒尺寸的依赖关系.Mo存在时可煅烧形成FeMoO4复合氧化物,后者比MgFe2O4相更加稳定.Mo/Fe比例对提高单壁碳纳米管的生长密度、纯度与管径均一性等均有明显影响.上述研究对进一步精确控制制备单壁碳纳米管有重要意义.  相似文献   

4.
Encapsulation of coronene inside single‐walled carbon nanotubes (SWNTs) was studied under various conditions. Under high vacuum, two main types of molecular encapsulation were observed by using transmission electron microscopy: coronene dimers and molecular stacking columns perpendicular or tilted (45–60°) with regard to the axis of the SWNTs. A relatively small number of short nanoribbons or polymerized coronene molecular chains were observed. However, experiments performed under an argon atmosphere (0.17 MPa) revealed reactions between the coronene molecules and the formation of hydrogen‐terminated graphene nanoribbons. It was also observed that the morphology of the encapsulated products depend on the diameter of the SWNTs. The experimental results are explained by using density functional theory calculations through the energies of the coronene molecules inside the SWNTs, which depend on the orientation of the molecules and the diameter of the tubes.  相似文献   

5.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

6.
采用原位脱氯化氢缩合聚合法制备了聚(2-甲氧基-5-辛氧基)对苯乙炔/单壁碳纳米管(PMOCOPV/SWNTs)复合材料. 红外光谱和拉曼光谱证实了在SWNTs表面的包覆层为PMOCOPV. 高分辨透射电子显微镜观察发现, PMOCOPV/SWNTs复合材料直径为4~7 nm, 其中PMOCOPV包覆层厚度约为2~5 nm. 紫外-可见吸收光谱表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs的吸收发生蓝移且强度提高. 荧光光谱研究表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs的最大发射波长发生蓝移且强度减小, SWNTs与PMOCOPV之间形成了光致电子转移体系, 使π电子离域程度增加, 导致荧光量子效率降低. 根据Eg与入射光子能量hν的关系, 拟合了PMOCOPV/SWNTs薄膜的光学禁带宽度, 发现随着SWNTs含量的增加, Eg逐渐减小. 采用简并四波混频方法测试其三阶非线性极化率χ(3), 结果表明, 随着SWNTs含量的增加, PMOCOPV/SWNTs复合体的非线性光学响应逐渐增强, 说明PMOCOPV与SWNTs之间形成了分子间光致电子转移体系, 产生了复杂的分子间π-π电子非线性运动.  相似文献   

7.
Syntheses of chiral 6,15‐dihydronaphtho[2,3‐c]pentaphene derivatives of opposite configurations are reported. Starting from anthracene, the strategy involves two key steps: a Diels–Alder reaction on a prochiral dianthraquinone, and an enantiomeric resolution using (?)‐menthol. The final molecules exhibit very strong optical activity, as shown by their circular dichroism spectra, and are examples of chiral facial amphiphiles. Their adsorption at the surface of single‐walled carbon nanotubes (SWNTs) has also been studied, and has been found to occur preferentially on 0.8–1.0 nm diameter nanotubes among the population of a high‐pressure CO conversion (HiPco) SWNT sample (0.8–1.2 nm). The synthesised facial amphiphiles act as nano‐tweezers for the diameter‐selective solubilisation of SWNTs in water. The expected optical activities of the SWNT samples solubilised by each of the chiral amphiphiles have been studied by circular dichroism spectroscopy, but the results are not yet conclusive.  相似文献   

8.
Uniform and small-diameter single-walled carbon nanotubes (SWNTs) have been produced using identical molecular nanoclusters containing Fe and Mo atoms with a defined molecular formula and a specific structure as catalysts in a chemical vapor deposition method. The average diameter of the SWNTs produced in these experiments is 1.0 nm with a standard deviation for the diameter distribution of 17%. The diameters of SWNTs were obtained by atomic force microscopy and Raman spectroscopy.  相似文献   

9.
Conducting polythiophene (PTh)/single‐wall carbon nanotubes (SWNTs) composites were synthesized by the in situ chemical oxidative polymerization method. The resulting cablelike morphology of the composite (SWNT–PTh) structures was characterized with elemental analysis, X‐ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, and transmission electron microscopy. The standard four‐point‐probe method was used to measure the conductivity of the samples. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed that the SWNT–PTh composites were core (SWNTs) and shell (PTh) hybrid structures. Spectroscopic analysis data for the composites were almost identical to those for PTh, supporting the idea that SWNTs served as templates in the formation of a coaxial nanostructure for the composites. The physical properties of the composites were measured and also showed that the SWNTs were modified by conducting PTh with an enhancement of various properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5283–5290, 2006  相似文献   

10.
Grafting of aldehyde structures to single‐walled carbon nanotubes (SWNTs) has been carried out to endow the nanotubes with appropriate wettability. The results of Fourier transform infrared (FTIR) spectroscopy, ultraviolin‐visible‐near infrared (UV‐VIS‐NIR) spectroscopy, and Raman spectroscopy provide the supporting evidence of aldehyde structures covalently attached to SWNTs. The improved wettability of aldehyde‐functionalized SWNTs (f‐SWNTs) was demonstrated by their good dispersion in organic medium, namely, ethanol and phenolic resin. The prospective covalent bonding between aldehyde structures on the surfaces of f‐SWNTs and phenolic resin makes it possible to prepare an integrated composite with the enhanced‐interfacial adhesion. The f‐SWNT composites, therefore, show much higher average values of dσ/dWCNT and dE/dWCNT (i.e., tensile strength and Young's modulus per unit weight fraction) compared with the composites filled with pristine SWNTs or MWNTs. The respective maxima are 9680 MPa and 320 GPa. It is thus feasible for f‐SWNTs to prepare the moderately enhanced but lightweight phenolic composites. Furthermore, the incorporation of f‐SWNTs does not limit the application of phenolic resin as insulation material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6135–6144, 2009  相似文献   

11.
The interaction between single‐walled carbon nanotubes (SWNTs) and graphene were studied with first‐principles calculations. Both SWNTs and single‐layer graphene (SLG) or double‐layer graphene (DLG) display more remarkable deformations with the increase of SWNT diameter, which implies a stronger interaction between SWNTs and graphene. Besides, in DLG, deformation of the upper‐layer graphene is less than in SLG. Zigzag SWNTs show stronger interactions with SLG than armchair SWNTs, whereas the order is reversed for DLG, which can be interpreted by the mechanical properties of SWNTs and graphene. Density of states and band structures were also studied, and it was found that the interaction between a SWNT and graphene is not strong enough to bring about obvious influence on the electronic structures of SWNTs. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

13.
Noncovalent functionalization of single‐walled carbon nanotubes (SWNTs) with conjugated polymers enhances SWNT processability and allows for selective dispersion of various SWNT species. Selective dispersions can be obtained by tuning the nature of the polymer, which can involve using various polymer backbones or side‐chains. However, a clear understanding of selectivity determinants is elusive, as the degree of polymerization (DP) has a large effect on SWNT selectivity. Additionally, preparing libraries of conjugated polymers with varying functionality while keeping DP consistent is difficult. Here, we report the utilization of a strained cyclooctyne‐containing conjugated polymer that serves as a versatile scaffold, enabling systematic preparation of a small library of conjugated polymers with different side‐chain functionality, while maintaining a consistent DP. The resulting polymers were used as dispersants for SWNTs, forming supramolecular polymer‐SWNT complexes that were characterized by UV‐Vis‐NIR absorption and Raman spectroscopy. In the series of polymers, we were able to probe the effect of small changes within the side chains, such as the incorporation of a carbonyl group or an aromatic unit, on the quality of the polymer‐SWNT dispersion. The results of these studies provide new insight into the factors that dictate the ability of a polymer to form strong interactions with SWNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2053–2058  相似文献   

14.
Micromold with microchannels was employed in assembly of directional free-standing single-walled carbon nanotube (SWNT) strings at room temperature. The new postgrowth assembly approach could, in principle, apply not only to a wide range of SWNTs in their soluble or dispersible forms, including small diameter (0.7-0.8 nm) SWNTs, covalent- and noncovalent-functionalized SWNTs, monodispersed SWNTs with identical diameter and chirality, and fullerenes@SWNTs, which either cannot survive the high-temperature treatment or cannot be synthesized by current CVD method, but also to other soluble or dispersible one-dimensional nanostructures.  相似文献   

15.
Fluorescence of semiconducting single‐walled carbon nanotubes (SWNTs) normally exhibits diameter‐dependent oxidative quenching behaviour. This behaviour can be changed substantially to become an almost diameter‐independent quenching phenomenon in the presence of electron‐withdrawing nitroaromatic compounds, including o‐nitrotoluene, 2,4‐dinitrotoluene, and nitrobenzene. This change is observed for SWNTs suspended either in sodium dodecyl sulfate or in Nafion upon titration with hydrogen peroxide. Benzene, toluene, phenol, and nitromethane do not show such change. These findings suggest the possibility of forming an electron donor–acceptor complex between SWNTs and nitroaromatic compounds, resulting in leveling the redox potential of different SWNT species. The observation appears to provide a new method for modifying the electrochemical potentials of SWNTs through donor–acceptor complex formation.  相似文献   

16.
Ring-opening surface initiated polymerization of l-proline N-carboxyanhydride was performed from amine functionalized single (SWNTs) and multi walled carbon nanotubes (MWNTs). The primary amines were grafted on the surfaces via a well-studied Diels–Alder cycloaddition. The initiator attachment helped the debundling of carbon nanotubes as shown by atomic force microscopy (AFM) studies where only small aggregates were observed. Thermogravimetric analysis revealed high wt% of grafted polyproline on the carbon nanotubes surface after the ring-opening polymerization. AFM studies showed a rather uniform layer of grafted polyproline from both MWNTs and SWNTs. The grafting of PLP on the surface was also verified by FTIR and Raman spectroscopy as well as 1H NMR in CDCl3/d-TFA. The polyproline grafted carbon nanotubes (CNTs) were readily dissolved in organic solvents in contrast to the insoluble pristine and amine-functionalized CNTs.  相似文献   

17.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

18.
Covalent sidewall functionalization of single wall carbon nanotubes   总被引:6,自引:0,他引:6  
Alkyllithium reagents may be used to attach alkyl groups to the sidewalls of fluoro nanotubes. Thermal gravimetric analysis combined with UV-vis-Nir spectroscopy has been used to provide a quantitative measure of the degree of functionalization. SWNTs prepared using the HiPco process exhibit a higher degree of alkylation than SWNTs from the laser-oven method, indicating that the smaller diameter fluoro tubes are alkylated more readily. The spectral signature of the pristine SWNTs can be regenerated when the alkylated SWNTs are heated in Ar at 500 degrees C, demonstrating that dealkylation occurs at this temperature. TGA-MS analysis using a sample of n-butylated h-SWNTs showed that 1-butene and n-butane are formed during thermolysis.  相似文献   

19.
Dispersions of single‐walled carbon nanotubes (SWNTs) have been prepared by using the room‐temperature ionic liquid [BMIM][BF4] (1‐butyl‐3‐methylimidazolium tetrafluoroborate), the triblock copolymer Pluronic L121 [poly(ethylene oxide)5‐poly(propylene oxide)68‐poly(ethylene oxide)5] and the non‐ionic surfactant Triton X‐100 (TX100) in the pure state. The size of the SWNTs aggregates and the dispersion degree in the three viscous systems depend on the sonication time, as highlighted by UV/Vis/NIR spectroscopy and optical microscopy analysis. A nonlinear increase in conductivity can be observed as a function of the SWNTs loading, as suggested by electrochemical impedance spectroscopy. The generation of a three‐dimensional network of SWNTs showing a viscoelastic gel‐like behavior above a critical percolation concentration has been found at 25 °C in all the investigated systems by oscillatory rheology measurements.  相似文献   

20.
Bandgap fluorescence spectroscopy of aqueous, micelle-like suspensions of SWNTs has given access to the electronic energies of individual semiconducting SWNTs, while substantially lower is the success achieved in the determination of the redox properties of SWNTs as individual entities. Here we report an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized SWNTs and determine the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also establish the Fermi energy and the exciton binding energy for individual tubes in solution. The linear correlation found between the potentials and the optical transition energies is quantified in two simple equations that allow one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号