首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze a new class of soliton solutions for a wave field, which describes propagation of soliton-like structures of a circularly polarized electromagnetic field comprising a finite number of field-oscillation periods in a transparent nonresonant medium. The considered solutions feature a smooth transition from the soliton solutions of Schröodinger type, which correspond to long pulses with a large number of field oscillations, to extremely short, virtually single-cycle video pulses. We show that such solutions can also be important for linearly polarized laser fields. The structural stability of few-optical-cycle solitons is demonstrated numerically, including the case of their collision. Based on stability analysis and with allowance for the genealogic relation between the obtained wave solitons and the solitons of the nonlinear Schröodinger equation, we argue that the former solitons can play the same fundamental role in the nonlinear dynamics of the considered wave fields. In particular, it is shown by numerical simulations that the few-optical-cycle solutions turn out to be the basic elementary components of such a dynamical process as the temporal compression of an initially long pulse to a pulse of very short duration. In this case, the minimum duration of a compressed pulse is determined by soliton structures of about minimal duration.  相似文献   

2.
徐天赋  张玉峰  许磊超  李再东 《中国物理 B》2017,26(10):100304-100304
We study the moving bright solitons in the weak attractive Bose–Einstein condensate with a spin–orbit interaction. By solving the coupled nonlinear Schr ?dinger equation with the variational method and the imaginary time evolution method,two kinds of solitons(plane wave soliton and stripe solitons) are found in different parameter regions. It is shown that the soliton speed dominates its structure. The detuning between the Raman beam and energy states of the atoms decides the spin polarization strength of the system. The soliton dynamics is also studied for various moving speed and we find that the shape of individual components can be kept when the speed of soliton is low.  相似文献   

3.
We present an experimental study on wave propagation in highly nonlocal optically nonlinear media, for which far-away boundary conditions significantly affect the evolution of localized beams. As an example, we set the boundary conditions to be anisotropic and demonstrate the first experimental observation of coherent elliptic solitons. Furthermore, exploiting the natural ability of such nonlinearities to eliminate azimuthal instabilities, we perform the first observation of stable vortex-ring solitons. These features of highly nonlocal nonlinearities affected by far-away boundary conditions open new directions in nonlinear science by facilitating remote control over soliton propagation.  相似文献   

4.
5.
New mechanisms of generation of acoustic and electromagnetic soliton-like pulses in an optoelastic medium upon nonlinear nonresonant interaction of the polarization components of an electromagnetic field with acoustic oscillations in the medium are considered. It is shown that the acousto-electromagnetic interaction in such a system may lead to the formation of coherent soliton excitations in a thin crystal plate. It is found that a modulation instability occurs in an extended medium, which is caused by the spatial effects and leads to the generation of transverse sound waves. The evolution of a light field in a one-dimensional extended periodic optoelastic medium is also considered. It is shown that acoustic and electromagnetic solitons can be generated due to the mixing of direct and backward optical waves and their nonresonant interaction with a sound wave.  相似文献   

6.
郑一帆  黄光侨  林机 《物理学报》2018,67(21):214207-214207
研究一维非局域三-五次非线性模型下,暗孤子和多极暗孤子的新解和传输特性.发现非局域程度和非线性参量变化对暗孤子的峰值和束宽产生影响,并且在特定的竞争非局域非线性参数下存在稳定基态暗孤子和多极暗孤子的束缚态.另外,讨论了在局域自聚焦三次和非局域自散焦五次非线性介质中暗孤子和两极暗孤子的传输特性,发现孤子比在自散焦三次和自聚焦五次的非线性介质中传输更加稳定.进一步研究了单暗孤子和三极暗孤子的功率与传播常数和非局域程度的关系,并讨论了不同类型暗孤子的线性稳定性问题.  相似文献   

7.
We analyze the effects of additional terms in the nonlinear Schr?dinger equation for spatial solitons, directly derived from the Maxwell's equations with the Kerr nonlinearity, on the shapes of bright and dark solitons with a fixed polarization. Combining analytical and numerical methods, we find that the additional terms always render the solitons broader. The most essential result is a fundamental limitation on the width of the subwavelength soliton: The ratio of the FWHM of the bright soliton to the wavelength cannot be smaller than 1/2, and the same ratio for the FWHM of the dark soliton cannot be smaller than 1/4.  相似文献   

8.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

9.
The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves.  相似文献   

10.
以变系数的非自治非线性薛定谔方程为模型,考虑了一种色散、非线性和自发拉曼散射效应管理下的非自治系统,通过简单变换显式给出了该系统的精确非自治拉曼多色孤子解。基于精确孤子解,解析研究了该拉曼多色孤子在非自治管理系统中的演化特性,发现孤子的中心位置、波数与色散和非线性以及拉曼效应有关,而孤子频移仅与拉曼效应的参数决定,拉曼效应主导了非自治孤子的自频移,引起了孤子的频移在传输过程中不断的发生变化,导致了孤子的多色性。另外,我们数值讨论了该非自治孤子的传输稳定性,结果表明:该非自治拉曼多色孤子在有限的扰动下具有较好的稳定性。  相似文献   

11.
We study the appearance of discrete gap solitons in a nonlinear Schrödinger model with a periodic on-site potential that possesses a gap evacuated of plane-wave solutions in the linear limit. For finite lattices supporting an anti-phase (q=π/2) gap edge phonon as an anharmonic standing wave in the nonlinear regime, gap solitons are numerically found to emerge via pitchfork bifurcations from the gap edge. Analytically, modulational instabilities between pairs of bifurcation points on this “nonlinear gap boundary” are found in terms of critical gap widths, turning to zero in the infinite-size limit, which are associated with the birth of the localized soliton as well as discrete multisolitons in the gap. Such tunable instabilities can be of relevance in exciting soliton states in modulated arrays of nonlinear optical waveguides or Bose-Einstein condensates in periodic potentials. For lattices whose gap edge phonon only asymptotically approaches the anti-phase solution, the nonlinear gap boundary splits in a bifurcation scenario leading to the birth of the discrete gap soliton as a continuable orbit to the gap edge in the linear limit. The instability-induced dynamics of the localized soliton in the gap regime is found to thermalize according to the Gibbsian equilibrium distribution, while the spontaneous formation of persisting intrinsically localized modes (discrete breathers) from the extended out-gap soliton reveals a phase transition of the solution.  相似文献   

12.
For the propagation of the ultrashort pulses in an inhomogeneousmulti-component nonlinear medium, a system of coupled equations isanalytically studied in this paper. Painlevé analysis shows thatthis system admits the Painlevé property under some constraints.By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pairof this system is derived, and the Darboux transformation (DT) isconstructed with the help of the obtained Lax pair. With symboliccomputation, the soliton solutions are obtained by virtue of the DTalgorithm. Figures are plotted to illustrate the dynamical featuresof the soliton solutions. Characteristics of the solitonspropagating in an inhomogeneous multi-component nonlinear medium arediscussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlapphenomenon between two solitons; (iv) Collision of two head-onsolitons and two head-on two-peak solitons; (v) Two different typesof interactions of the three solitons; (vi) Decomposition phenomenonof one soliton into two solitons. The results might be useful in thestudy on the ultrashort-pulse propagation in the inhomogeneousmulti-component nonlinear media.  相似文献   

13.
We analyze two-component spatial optical vortex solitons supported by parametric wave mixing processes in a nonlinear bulk medium. We study two distinct cases of such localized waves, namely, parametric vortex solitons due to phase-matched second-harmonic generation in an optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a "halo-vortex," consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a "ring-vortex" soliton which is a vortex in a harmonic field that guides a ring-like localized mode of the fundamental-frequency field.  相似文献   

14.
研究了具有非线性极化的负折射介质中孤子脉冲的传输特性,着重分析了在常规非线性传输模型中不曾出现的由负折射介质色散磁导率导致的可控自陡峭效应对孤子传输的影响.结果表明,与正自陡峭效应一样,负自陡峭效应同样造成孤子脉冲的非对称、中心偏移和高阶孤子衰减,但脉冲偏移的方向与正自陡峭效应情形相反.此外,利用可控自陡峭效应可以从某种程度上抵消三阶色散效应导致的孤子脉冲偏移,从而实现孤子脉冲中心的无偏移传输.  相似文献   

15.
杨晓雨  郑江波  董亮伟 《中国物理 B》2011,20(3):34208-034208
We address the existence,stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium.Several families of soliton solutions,including flat-topped,dipole-like,and multipole-like solitons,can be supported by the defected lattices with different heights of defects.The width of existence domain of solitons is determined solely by the saturable parameter.The existence domains of various types of solitons can be shifted by the variations of defect size,lattice depth and soliton order.Solitons in the model are stable in a wide parameter window,provided that the propagation constant exceeds a critical value,which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium.We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.  相似文献   

16.
Bright and bright-dark type multisoliton solutions of the integrable N-coupled nonlinear Schrödinger (CNLS) equations with focusing, defocusing and mixed type nonlinearities are obtained by using Hirota’s bilinearization method. Particularly, for the bright soliton case, we present the Gram type determinant form of the n-soliton solution (n:arbitrary) for both focusing and mixed type nonlinearities and explicitly prove that the determinant form indeed satisfies the corresponding bilinear equations. Based on this, we also write down the multisoliton form for the mixed (bright-dark) type solitons. For the focusing and mixed type nonlinearities with vanishing boundary conditions the pure bright solitons exhibit different kinds of nontrivial shape changing/energy sharing collisions characterized by intensity redistribution, amplitude dependent phase-shift and change in relative separation distances. Due to nonvanishing boundary conditions the mixed N-CNLS system can admit coupled bright-dark solitons. Here we show that the bright solitons exhibit nontrivial energy sharing collision only if they are spread up in two or more components, while the dark solitons appearing in the remaining components undergo mere standard elastic collisions. Energy sharing collisions lead to exciting applications such as collision based optical computing and soliton amplification. Finally, we briefly discuss the energy sharing collision properties of the solitons of the (2+1) dimensional long wave-short wave resonance interaction (LSRI) system.  相似文献   

17.
18.
We characterize soliton complexes in a high power double-clad erbium-doped fiber laser passively mode-locked through nonlinear polarization evolution. Such complexes involve some hundreds of solitons and form self-organized or disorganized patterns analogous to the states of the matter. Experimentally these soliton compounds are characterized through the autocorrelation trace, the optical spectrum and the oscilloscope trace which is limited due to its finite bandwidth. We perform here a reconstruction of the experimental results thus allowing us to identify the temporal distribution of the solitons inside the cavity. The reconstruction allows us to clarify and either to confirm or to correct the former intuitive interpretation. Especially, a soliton ‘spray’ is identified.  相似文献   

19.
We consider the problem of energy transport in a Davydov model along an anharmonic crystal medium obeying quartic longitudinal interactions corresponding to rigid interacting particles. The Zabusky and Kruskal unidirectional continuum limit of the original discrete equations reduces, in the long wave approximation, to a coupled system between the linear Schrödinger (LS) equation and the modified Korteweg–de Vries (mKdV) equation. Single- and two-hump bright soliton solutions for this LS–mKdV system are predicted to exist by variational means and numerically confirmed. The one-hump bright solitons are found to be the anharmonic supersonic analogue of the Davydov's solitons while the two-hump (in both components) bright solitons are found to be a novel type of soliton consisting of a two-soliton solution of mKdV trapped by the wave function associated to the LS equation. This two-hump soliton solution, as a two component solution, represents a new class of polaron solution to be contrasted with the two-soliton interaction phenomena from soliton theory, as revealed by a variational approach and direct numerical results for the two-soliton solution.  相似文献   

20.
孤子是自然界中一种基本的非线性波动传递形式,孤子间的相互作用能够映射出复杂非线性系统的多体动力学过程,具有重要的基础研究价值.被动锁模激光器是研究孤子相互作用的理想平台.光孤子之间的吸引、排斥作用能够形成孤子分子,而时间拉伸色散傅里叶变换(TS-DFT)技术使得实时探测孤子分子动力学成为可能.基于TS-DFT技术,本文实验研究了钛宝石飞秒激光器产生的孤子分子的内部动态,通过改变抽运功率,分别观察到了间隔为180 fs的稳定的孤子分子和间隔为105 fs的具有微弱相位振荡的孤子分子,后者的振动幅度仅为0.05 rad.实验发现受到环境影响,稳定态的孤子分子还能够转变为相位滑动状态.这些间隔为百飞秒量级的光学孤子分子对于研究孤子的近程非线性相互作用具有突出的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号