首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the application of high-performance liquid chromatography combined with continuous-flow fast atom bombardment mass spectrometry to analytical problems in the biomedical laboratory. Applications include the compound-specific detection of diagnostic acylcarnitines in human urine, the separation and analysis of acyl-coenzyme A thioesters, and qualitative studies on complex mixtures of modified peptides (dansyl and dinitrophenyl derivatives). For each of these applications standard analytical columns (3.9 mm I.D.) and 1 ml/min flow-rates were employed with post-column stream splitting (1:100) before mass spectrometry. Various mobile phase compositions and solvent gradients were employed. The addition of 1-5% glycerol to the mobile phase was shown to have little effect on the chromatography. For all compounds studied (acylcarnitines, acyl-coenzyme A thioesters, and derivatized peptides) molecular weight information was obtained and sufficient sensitivity was achieved to allow unambiguous identification of trace components in complex mixtures.  相似文献   

2.
Negative-ion continuous-flow fast-atom bombardment mass spectrometry was evaluated as a means for the quantitative analysis of N-acetylneuraminyl-galactosyl-glucosyl-ceramide (NeuAc-GM3) and N-acetylgalactosaminyl-(N-acetylneuraminyl)galactosyl-glucosyl-ceramide (NeuAc-GM2). This study was carried out on a 7070-EQ mass spectrometer (VG Analytical, Manchester, UK) using a home-made continuous-flow fast-atom bombardment probe with a mixture of methanol + water + triethanolamine (70:27:3, v/v/v) as the mobile phase. Utilizing 100 ng of acetyl-lysogalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)g alactosyl-glucosyl-ceramide (acetyl-lysoGM1) as an internal standard, standard curves for NeuAc-GM3 d18:1-16:0, NeuAc-GM3 d18:1-18:0 and Neuac-GM2 d18:1-18:0 were found to be linear over the range 5-250 ng, with associated correlation coefficients of 0.990-0.997. The lower limit of detection was found to be 2.5 ng. Satisfactory results could also be obtained when the calibration curves were derived from the deprotonated molecular ions of a mixture of the NeuAc-GM2 and NeuAc-GM3 classes. Using this approach, quantitative determination of NeuAc-GM3 d18:1-16:0 from rat adrenal gland was performed using N-acetylneuraminic acid assay as a test control. We found 278 +/- 36 ng of this species in 1 mg of tissue (three replicate experiments). The procedure represents a sensitive method for the quantitation of monosialogangliosides and its capability to give molecular species information.  相似文献   

3.
建立了一种贝类组织中原多甲藻酸(azaspiracid, AZA)贝类毒素主要成分AZA1的高效液相色谱-串联质谱检测方法。本方法采用甲醇-水(80:20, v/v)溶液对贝类组织中AZA1进行提取,并用MAX阴离子交换固相萃取(SPE)柱富集净化,使用Atlantis dC18(150 mm×4.6 mm, 5.0 μm)色谱柱分离,以含有50 mmol/L甲酸和2 mmol/L甲酸铵的乙腈-水溶液(80:20, v/v)为流动相进行等度洗脱,质谱采用选择反应监测(SRM)模式。AZA1在5 min内获得完全分离,且在48.85~2 442 ng/L范围内线性良好,相关系数为0.998 1。该方法检出限(S/N=3)为11.00 pg/g,添加水平为36.64、73.27、146.54 pg/g时的平均回收率为75.8%~82.5%(n=6),相对标准偏差小于10%。利用该方法对采自大连、青岛、广州水产品市场上的112个贝类样品进行了分析,发现采自大连和广州的部分贝类样品中含有AZA1。结果表明,该方法具有简单、快速、灵敏度高等特点,能充分满足贝类中AZA1检测的要求。  相似文献   

4.
A gradient clean‐up method for the quantification of five kinds of banned drugs (two hormones, two sedatives, and one chloramphenicol) in milk powder was developed. We used the combination of solid‐phase extraction purification with gas chromatography and mass spectrometry. Milk powder was initially hydrolyzed by β‐glucuronidase/arylsulfatase, and then the hydrolyzed solution was concentrated and purified using a C8 and cation resin solid‐phase extraction column. To isolate hormones and chloramphenicol drugs, products from the previous step were diluted with methanol and further purified using a silica and diatomite solid‐phase extraction column. After derivatization, the drugs were analyzed by gas chromatography with mass spectrometry, and the hydrolyzed solution was diluted with 5% ammoniated methanol to purify sedatives before gas chromatography with mass spectrometry analysis. Results showed that after adding the banned drugs at concentrations of 0.3–10.0 μg/kg, the average recovery range was 78.2–97.3% with relative standard deviations of 5.3–12.5%. The limit of quantification of the banned drugs (S/N ≥ 10) was 0.3–5.0 μg/kg, whereas the limit of detection (S/N ≥ 3) was 0.1–2.0 μg/kg. The solid‐phase extraction gradient purification system was simple, rapid, and accurate, and could satisfy the detection requirements of hormone, sedatives, and chloramphenicol drugs when used together with gas chromatography and mass spectrometry.  相似文献   

5.
A selective and sensitive method employing high-performance liquid chromatography-electrospray ionization mass spectrometry was developed and validated for the determination of mitiglinide in human plasma.With gliclazide as the internal standard, mitiglinide was extracted from plasma with n-hexane: = 80 : 20 (v/v). The organic layer was evaporated and the residue was redissolved in methanol: water (10 mM CH3COONH4, pH = 3.0) = 65 : 35 (v/v). An aliquot of 10 microl was chromatographically analyzed on a prepacked Shimadzu VP-ODS (5 microm, 150 x 2.0 mm i.d.) using the mobile phase comprising methanol: water (10 mM CH3COONH4) = 65 : 35 (v/v) by means of selected-ion monitoring mode mass spectrometry. Standard curves were linear (r2 = 0.9972) over the concentration range of 2.84-11 300 pmol/ml and had good accuracy and precision. The within- and between-batch precisions of the method were within 15% of standard deviation. The lower limit of detection was 1.42 pmol/ml. The validated HPLC/ESI-MS method has been successfully applied in the pharmacokinetics of mitiglinide in 12 healthy Chinese volunteers.  相似文献   

6.
A rapid, simple and sensitive, liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous determination of bergenin, chlorogenic acid and four flavonoids in a QingGanSanJie preparation in rat plasma. Puerarin was selected as the internal standard (IS). Plasma samples were precipitated with methanol and separated with a reverse phase Agilent Poroshell 120 EC‐C18 column using a gradient mobile phase of methanol–water containing 0.1% formic acid (v/v). A triple quadruple mass spectrometer was used for quantification (limit of detection 0.36–5.55 ng/mL). Intra‐day and inter‐day precisions were within 15% and the average extraction recoveries ranged from 85 to 115% for each analyte. The method allowed simultaneous quantification for the first time of the pharmacokinetics of bergenin, chlorogenic acid and four flavonoids after intragastric administration of a QingGanSanJie extract in Sprague–Dawley rats. It was found that bergenin and chlorogenic acid had typical extravascular administration concentration–time curves; flavonoids had a bimodal distribution improving bioavailability and extending the pharmacodynamics period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An analytical method for the determination of bisoprolol in human plasma has been developed based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analyte and internal standard (IS) diphenhydramine were cleaned up by protein precipitation with acetonitrile, reconstituted in mobile phase and separated by reversed-phase high-performance liquid chromatography (HPLC) using methanol:10 mm ammonium acetate:formic acid (70:30:0.1 v/v/v) as mobile phase. Detection was carried out by multiple reaction monitoring (MRM) on an LC-MS/MS system and was completed within 2.5 min. The assay was linear over the range 0.5-100 ng/mL with a limit of quantitation (LOQ) of 0.5 ng/mL. The intra- and inter-day precision levels were within 5.54 and 9.95%, respectively, while the accuracy was in the range 89.4-113%. This method has been utilized in a pharmacokinetic study, where healthy volunteers were treated with an oral dose of 5 mg bisoprolol.  相似文献   

8.
A novel method was developed for the first time for the determination of 17 bisphenols by ultra‐high performance supercritical fluid chromatography with tandem mass spectrometry. Under the optimal conditions, 17 bisphenols were separated successfully on a high density diol column in 9 min using methanol and carbon dioxide as mobile phase. 0.02% ammonium hydroxide/methanol v/v was used as the post‐column compensation solvent to improve response of mass spectrometry. Linear relations of matrix‐matched calibration curve were favorable over the selected concentration range of 1–100 μg/kg with correlation coefficients greater than 0.9981. The method limit of detection and limit of quantitation were 0.1–0.5 μg/kg and 0.5–2.5 μg/kg, respectively. The average recoveries at three spiked levels in polycarbonate were in the range of 81.8–114.5%. Intra‐day and inter‐day precisions for six replicates were below 15.0%. This method was successfully applied to determine bisphenols in polycarbonate.  相似文献   

9.
Dost K  Davidson G 《The Analyst》2003,128(8):1037-1042
A packed-column supercritical fluid chromatography-atmospheric pressure chemical ionisation mass spectrometry method was studied for the determination of artemisinin from Artemisia annua L. extracts. The technique does not require any kind of derivatisation prior to the analysis. All samples were simply dissolved in methanol and injected into the mobile phase. Detection was achieved by using mass spectrometry with atmospheric pressure chemical ionisation. The ionisation technique is relatively soft and provides protonated molecular ion and informative structural fragmentation for the compound. Benzophenone was used as a chromatographic standard for the determination of the analytical reproducibility. The supercritical carbon dioxide mobile phase used in the system was modified by 10% methanol. The average absolute retention time was 3.54 min with a standard deviation of 0.017 min and a relative standard deviation of 0.4% with respect to benzophenone for the procedure. The correlation coefficient was 0.998 and detection limit 370 pg on column.  相似文献   

10.
Gu Q  Shi X  Yin P  Gao P  Lu X  Xu G 《Analytica chimica acta》2008,609(2):192-200
Two simple, rapid and specific analytical methods for 13 catecholamines and their metabolites have been developed based on liquid chromatography tandem mass spectrometry in a multiple reaction monitoring mode. Tyrosine, dopamine, dihydroxyphenylalanine, epinephrine, norepinephrine, 3-methoxytyramine, normetanephrine, metanephrine and isoproterenol (internal standard) were separated on a Kromasil™ Cyano analytical column by a mobile phase consisting of 60% (v/v) acetonitrile and 40% (v/v) water adjusted with formic acid to pH 3.0, and detected by positive ionization electrospray tandem mass spectrometry. While vanillymandelic acid, 3,4-dihydroxymandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid, 4-hydroxy-3-methoxyphenylglycol and 5-hydroxy-2-indolecarboxylic acid (internal standard) were separated on a reversed-phase Shim-Pak VP-ODS column with the mobile phase of 60% (v/v) acetonitrile, and 40% (v/v) water adjusted with formic acid to pH 4.5 and detected in the negative ionization electrospray tandem mass spectrometry. The influence of various parameters such as column type and mobile phase composition on separation and sensitivity were investigated. The limits of detection were in the range of 0.5-20 ng mL−1. The mean recoveries determined from three different concentrations of each analyte were above 85.4%. The precision of the method calculated as relative standard deviation was lower than 5.3%. Deduced from the results of real sample analysis, adrenal gland synthesizes and stores the catecholamine hormones norepinephrine and epinephrine.  相似文献   

11.
We developed a method for determining pravastatin or pitavastatin, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, in plasma using liquid chromatography and tandem mass spectrometry (LC-MS/MS). Pravastatin, pitavastatin and the internal standard fluvastatin were extracted from plasma with solid-phase extraction columns and eluted with methanol. After drying the organic layer, the residue was reconstituted in mobile phase (acetonitrile:water, 90:10, v/v) and injected onto a reversed-phase C(18) column. The isocratic mobile phase was eluted at 0.2 mL/min. The ion transitions recorded in multiple reaction monitoring mode were m/z 423 --> 101, 420 --> 290 and 410 --> 348 for pravastatin, pitavastatin and fluvastatin, respectively. The coefficient of variation of the assay precision was less than 12.4%, the accuracy exceeded 89%. The limit of detection was 1 ng/mL for all analytes. This method was used to measure the plasma concentration of pitavastatin or pravastatin from healthy subjects after a single 4 mg oral dose of pitavastatin or 40 mg oral dose of pravastatin. This is a very simple, sensitive and accurate analytic method to determine the pharmacokinetic profiles of pitavastatin or pravastatiny.  相似文献   

12.
A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.  相似文献   

13.
《Analytical letters》2012,45(8):1348-1365
Abstract

A rapid and specific liquid chromatography/tandem mass spectrometry method was described for the simultaneous determination of hydrochlorothiazide and valsartan in human plasma. After extracted from plasma using methanol, hydrochlorothiazide, valsartan and hydroflumethiazide, irbesartan, used as the internal standard, respectively, were chromatographically analyzed on a Phenomenex Kromasil C8 column with water and methanol (27:73, v/v) as the mobile phase. Selected reaction monitoring was specific for mass detection employing negative electrospray ionization. The calibration standards were linear over the concentration range (3.13–800 ng/ml for hydrochlorothiazide and 11.72–3000 ng/ml for valsartan). The method was found to be suitable for application to a pharmacokinetic study after oral administration of dispersible tablet containing 12.5 mg hydrochlorothiazide and 80 mg valsartan to 20 healthy volunteers.  相似文献   

14.
A fast, sensitive and specific high-performance liquid chromatography tandem mass spectrometry method was developed for simultaneous determination of metformin and rosiglitazone in human plasma. With phenformin as an internal standard, the analysis was carried out on a C(18) column (50 mm × 2.1 mm, 3.5 μm) using a mobile phase consisting of acetonitrile-10 mM ammonium acetate (20:80, v/v). The detection was performed by tandem mass spectrometry via electrospray ionization. Linear calibration curves were obtained in the concentration of 1.054-263.5 ng/mL for rosiglitazone and 4.040-5050 ng/mL for metformin. The method was applicable to clinical pharmacokinetic study of metformin and rosiglitazone in healthy volunteers following oral administration.  相似文献   

15.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Ondansetron and its hydroxylated metabolites were determined in human serum using solid-phase extraction (SPE) and liquid chromatography/positive ion electrospray tandem mass spectrometry. Pyrimethamine was used as the internal standard. The analytes were eluted from the SPE cartridge using 2 x 1 ml of methanol containing 0.5% triethylamine, evaporated under vacuum and the residue was reconstituted in the mobile phase. The liquid chromatographic separation was achieved on a silica column using a mobile phase of aqueous 20 mM ammonium acetate (pH 4.7)-acetonitrile (85 : 15, v/v) at a flow-rate of 0.4 ml min(-1). The method was linear over the range 1-500 ng ml(-1) for ondansetron and each of the metabolites in human serum. The intra-day accuracy was better than 9.1% and the precision was <10.3%; the inter-day accuracy was better than 9.5% and the precision was <12.6%. The limit of detection was 250 pg ml(-1) based on a signal-to-noise ratio of 3. The absolute recovery from serum for all analytes was >90%.  相似文献   

17.
An analytical method for the determination of tranilast in human plasma using tramadol as the internal standard has been developed based on liquid chromatography/tandem mass spectrometry. Sample preparation involved protein precipitation with methanol. Separation by reversed-phase high-performance liquid chromatography using methanol/10 mM ammonium acetate (70: 30, v/v) as mobile phase was complete in a run time of 2.4 min. Detection on a Q TRAP system used multiple reaction monitoring. The method was linear in the range 0.06-20 microg/mL with intra- and inter-day precisions (as relative standard deviation) of 2.2-2.6% and 2.3-2.9%, respectively. Accuracy (as relative error) was <-2.5%. The method was applied in a pharmacokinetic study in healthy volunteers treated with a single 80 mg oral dose of tranilast.  相似文献   

18.
Gradient elution reversed-phase high-performance liquid chromatography (RP-HPLC) was used for the determination of compounds occurring during the production of biodiesel from rapeseed oil. Individual triacylglycerols (TGs), diacylglycerols, monoacylglycerols and methyl esters of oleic, linoleic and linolenic acids and free fatty acids were separated in 25 min using a combined linear gradient with aqueous-organic and non-aqueous mobile phase steps: 70% acetonitrile+30% water in 0 min, 100% acetonitrile in 10 min, 50% acetonitrile+50% 2-propanol-hexane (5:4, v/v) in 20 min and 5 min final hold-up. Another method with a non-aqueous linear mobile phase gradient [from 100% methanol to 50% methanol+50% 2-propanol-hexane (5:4, v/v) in 15 min] was used for fast monitoring of conversion of rapeseed oil triacylglycerols to fatty acid methyl esters and for quantitation of residual TGs in the final biodiesel product. Sensitivity and linearity of various detection modes (UV detection at 205 nm, evaporative light scattering detection and mass spectrometric detection) were compared. The individual sample compounds were identified using coupled HPLC-atmospheric pressure chemical ionization mass spectrometry in the positive-ion mode.  相似文献   

19.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of methylene blue (MB) and its major metabolite, azure B (AZB), in rat plasma. A simple protein precipitation using acetonitrile was followed by injection of the supernatant on to a Zorbax HILIC Plus column (3.5 µm, 2.1 × 100 mm) with isocratic mobile phase consisting of 5 mM ammonium acetate in 10:90 (v/v) water:methanol at a flow rate of 0.3 mL/min and detection in positive ionization mode. The standard curve was linear over the concentration range from 1 to 1000 ng/mL for MB and AZB with coefficient of determination above 0.9930. The lower limit of quantification was 1 ng/mL using 20 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were <12%. The developed analytical method was successfully applied to the pharmacokinetic study of MB and AZB in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, high‐throughput and specific high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated according to the FDA guidelines for quantification of ulifloxacin in rat and rabbit plasma. The analyte was separated on a Peerless basic C18 column (33 × 4.6 mm, 3 µm) with an isocratic mobile phase of methanol–water containing formic acid (0.5%, v/v; 9:1, v/v) at a flow rate of 0.5 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 350.500 → 248.500 for ulifloxacin and m/z 332.400 → 231.400 for ciprofloxacin (internal standard; IS) on a triple quadrupole mass spectrometer. The response to ulifloxacin was linear over the range 0.010–2.500 µg/mL in both plasma. The limit of detection and lower limit of quantification of ulifloxacin were determined in both species to be 0.0025 and 0.010 µg/mL, respectively. The method was successfully applied to quantitatively assess the toxicokinetics of ulifloxacin in rat and rabbit following a single 400 mg/kg (in rat) and 200 mg/kg (in rabbit) oral dose of the prulifloxacin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号