首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have employed a novel capillary electrophoresis (CE) approach recently developed in our laboratory, termed ion-interaction-capillary zone electrophoresis (II-CZE), to the resolution of a mixture of 27 synthetic cationic proteomic peptide standards. These peptides were comprised of three groups of nine peptides (with net charges of +1, +2 and +3 for all nine peptides within a group), the hydrophobicity of the nine peptides within a group varying only subtly between adjacent peptides. This bidimensional CE approach achieved excellent resolution of the peptides with high peak capacity by combining the powerful CZE mechanism located in the background electrolyte (BGE) with an hydrophobicity-based mechanism also located in the BGE, the latter consisting of high concentrations (up to 0.4M) of aqueous perfluorinated acids (trifluoroacetic acid, pentafluoropropionic acid and heptafluorobutyric acid). Thus, concomitant with a CZE separation of the three differently charged groups of peptides, there is an hydrophobically-mediated separation of the peptides within these groups effected through interaction of the hydrophobic anions of the perfluorinated acids with hydrophobic amino acid side-chains in the peptides. This methodology is dramatically different from other CE methods that have used complexing agents such as micelles or cyclodextrins in MEKC. Overall, the results presented here demonstrate the value of CE as a peptide separative tool in its own right, including its use for proteomic applications, and not merely as a complementary technique to reversed-phase high-performance liquid chromatography (RP-HPLC).  相似文献   

2.
Despite the continuing dominance of trifluoroacetic acid (TFA) as the anionic ion-pairing reagent of choice for peptide separations by reversed-phase high-performance liquid chromatography (RP-HPLC), we believe that a step-by-step approach to re-examining the relative efficacy of TFA compared to other ion-pairing reagents is worthwhile, particularly for the design of separation protocols for complex peptide mixtures, e.g., in proteomics applications. Thus, we applied RP-HPLC in the presence of different concentrations of anionic ion-pairing reagents - phosphoric acid, TFA, pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA)--to a mixture of three groups of four 10-residue peptides, these groups containing peptides of +1, +3 or +5 net charge. Overall separation of the 12-peptide mixture improved with increasing reagent hydrophobicity (phosphate- < TFA- < PFPA- < HFBA-) and/or concentration of the anion, with reagent hydrophobicity having a considerably more pronounced effect than reagent concentration. HFBA, in particular, achieved an excellent separation at a concentration of just 10 mM, whereby the peptides were separated by charged groups (+1 < +3 < +5) and hydrophobicity within these groups. There was an essentially equal effect of reagent hydrophobicity and concentration on each positive charge of the peptides, a useful observation for prediction of the effect of varying counterion concentration hydrophobicity and/or concentration during optimization of peptide purification protocols. Peak widths were greater for the more highly charged peptides, although these could be decreased significantly by raising the acid concentration; concomitantly, peptide resolution increased with increasing concentration of ion-pairing reagent.  相似文献   

3.
Popa TV  Mant CT  Hodges RS 《Electrophoresis》2003,24(24):4197-4208
A mixture of eight structurally closely related synthetic peptides as capillary electrophoretic (CE) standards is introduced. The almost identical mass-to-charge ratio of the standards, coupled with their random-coil (i.e., no secondary structure) nature, offer a potent analytical test for CE to separate peptides varying only subtly in hydrophobicity. Parameters varied to effect a separation included background electrolyte concentration, temperature, applied voltage in capillary zone electrophoresis (CZE in uncoated capillaries), as well as the introduction of hydrophobic mechanisms to the separation either through the use of micelles or C8-coated capillaries. Our step-by-step approach culminated in an optimized combination of a CZE mechanism for separation of differently charged peptide groups (based on common mass-to-charge ratio) and an ion-pairing mechanism (effecting a separation within each group of identically charged peptides), which we have termed ion-interaction CZE or II-CZE. The study clearly shows how the peptide standards allow an excellent assessment of the resolving power of CE.  相似文献   

4.
The present study uses an unique capillary electrophoresis (CE) approach, that we have termed ion-interaction capillary zone electrophoresis (II-CZE), for the separation of diastereomeric peptide pairs where a single site in the centre of the non-polar face of an 18-residue amphipathic alpha-helical peptide is substituted by the 19 L- or D-amino acids. Through the addition of perfluorinated acids at very high concentrations (up to 400 mM), such concentration levels not having been used previously in chromatography or CE, to the background electrolyte (pH 2.0), we have been able to achieve baseline resolution of all 19 diastereomeric peptide pairs with an uncoated capillary. Since each diastereomeric peptide pair has the same sequence, identical mass-to-charge ratio and identical intrinsic hydrophobicity, such a separation by CZE has previously been considered theoretically impossible. Excellent resolution was achieved due to maximum advantage being taken of even subtle disruption of peptide structure/conformation (due to the presence of D-amino acids) of the non-polar face of the amphipathic alpha-helix and its interaction with the hydrophobic anionic ion-pairing reagents. In addition, due to the excellent resolution of diastereomeric peptide pairs by this novel CZE approach, we have also been able to separate a mixture of these closely-related alpha-helical peptides.  相似文献   

5.
The present study set out to investigate whether observed relative hydrophilicity/hydrophobicity values of positively charged side-chains (with Lys and Arg as representative side-chains) or hydrophobic side-chains (with Ile as the representative side-chain) were context-dependent, i.e., did such measured values vary depending on characteristics of the peptides within which such side-chains are substituted (overall peptide hydrophobicity, number of positive charges) and/or properties of the mobile phase (anionic counterions of varying hydrophobicity and concentration)? Reversed-phase high-performance liquid chromatography (RP-HPLC) was applied to two series of four synthetic peptide analogues (+1, +2, +3 and +4 net charge), the only difference between the two peptide series being the substitution of one hydrophobic Ile residue for a Gly residue, in the presence of anionic ion-pairing reagents of varying hydrophobicity (HCOOH approximately H3PO4 < TFA < PFPA < HFBA) and concentration (2-50 mM). RP-HPLC of these peptide series revealed that the relative hydrophilicity of Lys and Arg side-chains in the peptides increased with peptide hydrophobicity. In addition the relative hydrophobicity of Ile decreased dramatically with an increase in the number of positive charges in the peptide, this hydrophobicity decrease being of greater magnitude as the hydrophobicity of the anionic ion-pairing reagent increased. These results have significant implications in the prediction of peptide retention times for proteomic applications.  相似文献   

6.
Popa TV  Mant CT  Hodges RS 《Electrophoresis》2007,28(13):2181-2190
We have furthered our understanding of the separative mechanism of a novel CE approach, termed ion-interaction CZE (II-CZE), developed in our laboratory for the resolution of mixtures of cationic peptides. Thus, II-CZE and RP-HPLC were applied to the separation of peptides differing by a single amino acid substitution in 10- and 12-residue synthetic model peptide sequences. Substitutions differed by a wide range of properties or side-chain type (e.g., alkyl side-chains, polar side-chains, etc.) at the substitution site. When carried out in high concentrations (400 mM) of pentafluoropropionic acid (PFPA), II-CZE separated peptides in order of increasing hydrophobicity when the substituted side-chains were of a similar type; when II-CZE was applied to the mixtures of peptides with substitutions of side-chains that differed in the type of functional group, there was no longer a correlation of electrophoretic mobility in II-CZE with relative peptide hydrophobicity, suggesting that a third factor is involved in the separative mechanism beyond charge and hydrophobicity. Interestingly, the hydrophobic PFPA- anion is best for separating peptides that differ in hydrophobicity with hydrophobic side-chains but high concentrations of the hydrophilic H2PO4- anion are best when separating peptides that differ in polar side-chains relative to hydrophobic side-chains. We speculate that differential hydration/dehydration properties of various side-chains in the peptide and the hydration/dehydration properties of the hydrophilic/hydrophobic anions as well as the electrostatic attractions between the peptide and the anions in solution all play a critical role in these solution-based effects.  相似文献   

7.
Mixed-mode hydrophilic interaction/cation-exchange chromatography (HILIC/CEX) was applied to the separation of two mixtures of synthetic peptide standards: (i) a 27-peptide mixture containing three groups of peptides (each group containing nine peptides of the same net charge of +1, +2 or +3), where the hydrophilicity/hydrophobicity of adjacent peptides within the groups varied only subtly (generally by only a single carbon atom); and (ii) peptide pairs with the same composition but different sequences, where the sole difference between the peptides was the position of a single amino acid substitution. HILIC/CEX is essentially CEX chromatography in the presence of high levels of organic modifier (generally ACN). The present study demonstrated the dramatic effect of increasing ACN concentration (optimum levels of 60-80%, depending on the application) on the separation of both mixtures of peptides. The greater the charge on the peptides, the better the separation achievable by HILIC/CEX. In addition, HILIC/CEX separation of both the peptide mixtures used in the present study was shown to be superior to that of the more commonly applied RP-HPLC mode. Our results highlight again the efficacy of HILIC/CEX as a peptide separation mode in its own right as well as an excellent complement to RP-HPLC.  相似文献   

8.
Capillary electrophoresis (CE) offers fast and high‐resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user‐friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano‐electrospray ionization (ESI), matrix‐assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE‐MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two‐dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE‐modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.  相似文献   

9.
The specificity and rate of cleavage of adrenocorticotrophic hormone (ACTH) peptide bonds by endoproteinase Arg C were analyzed using capillary electrophoresis (CE) and reversed-phase (C18) high-performance liquid chromatography (HPLC). Acidic cleavage products were readily resolved by CE in uncoated capillaries using low ionic strength electrolytes. However, products predicted to have a net positive charge greater than 2 or more than 4 positively charged groups per peptide did not migrate out from the capillary at low ionic strength. Addition of salts and zwitterions to the electrolyte decreased capillary-peptide interactions such that all of the ACTH peptides examined were eluted with high efficiency separation by CE. Commercially obtained endoproteinase Arg C preparations exhibited peptidase activity at Lys-15-Lys16 and at Lys16-Arg17 in addition to the expected cleavage at Arg-X bonds. ACTH peptide bond cleavage rates for Arg8-Trp9, Arg17-Arg-18, Lys15-Lys16, and Lys16-Arg17 were 1.46, 0.096, 0.57, and 0.029 mumol min-1 mg-1 respectively. CE separations generally exhibited better resolution and were accomplished in shorter times than C18 HPLC separations. These properties make CE a particularly appropriate method for kinetic analysis of proteolytic enzyme action on peptide substrates.  相似文献   

10.
The homologous series of volatile perfluorinated acids-trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA) and heptafluorobutyric acid (HFBA)--continue to be excellent anionic ion-pairing reagents for reversed-phase high-performance liquid chromatography (RP-HPLC) after more than two decades since their introduction to this field. It was felt that a thorough, step-by-step re-examination of the effects of anionic ion-pairing reagents over a wide concentration range on RP-HPLC peptide elution behaviour is now due, particularly considering the continuing dominance of such reagents for peptide applications. Thus, RP-HPLC was applied over a range of 1-60 mM phosphoric acid, TFA, PFPA and HFBA to two mixtures of 18-residue synthetic peptides containing either the same net positive charge (+4) or varying positive charge (+1, +2, +3, +4). Peptides with the same charge are resolved very similarly independent of the ion-pairing reagent used, although the overall retention times of the peptides increase with increasing hydrophobicity of the anion: phosphate < TFA- < PFPA- < HFBA-. Peptides of differing charge move at differing rates relative to each other depending on concentration of ion-pairing reagents. All four ion-pairing reagents increased peptide retention time with increasing concentration, albeit to different extents, again based on hydrophobicity of the anion, i.e., the more hydrophobic the anion, the greater the increase in peptide retention time at the same reagent concentration. Interestingly, phosphoric acid produced the best separation of the four-peptide mixture (+1 to +4 net charge). In addition, concentrations above 10 mM HFBA produced a reversal of the elution order of the four peptides (+1 < + 2 < + 3 < + 4) compared to the elution order produced by the other three reagents over the entire concentration range (+4 < + 3 < + 2 < + 1).  相似文献   

11.
12.
We have made a rigorous assessment of the ability of capillary electrophoresis to resolve peptide diastereomers through its application to the separation of a series of synthetic 18-residue, amphipathic alpha-helical monomeric peptide analogues, where a single site in the centre of the hydrophobic face of the alpha-helix is substituted by 19 L- or D-amino acids. Such L- and D-peptide pairs have the same mass-to-charge ratio, amino acid sequence and intrinsic hydrophobicity, varying only in the stereochemistry of one residue. CE approaches assessed in their ability to separate diastereomeric peptide pairs included capillary zone electrophoresis (uncoated capillary), micellar electrokinetic chromatography (uncoated capillary in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS), open-tubular capillary electrochromatography (C(8)-coated capillary in the presence of 25% 2,2,2-trifluoroethanol (TFE) or 25% ethanol). Overall, the OT-CEC methods were the most effective at separating the most peptide pairs, particularly for those containing hydrophilic side chains. However, the MEKC approach proved most effective for separation of peptide pairs containing hydrophobic or aromatic side chains.  相似文献   

13.
Kim J  Zand R  Lubman DM 《Electrophoresis》2003,24(5):782-793
Several semiempirical models for peptide electrophoretic mobility have been tested for capillary electrophoresis (CE) separation with a positively charged capillary using on-line CE combined with electrospray ionization-mass spectrometry (ESI-MS). In the current system with pH 2.7, the expression q/M(0.56) provided the best correlation with the electrophoretic mobility in the analysis of a set of 18 standard samples, where q is the calculated net charge and M is the molecular weight. The peptides resulting from various digests of horse heart myoglobin or bovine hemoglobin were used to demonstrate the validity of this correlation. Post-translationally modified peptides from tryptic digest of human myelin basic protein were also investigated and were found to provide excellent correlation with the linear plot when the total charge of the peptide was correctly calculated. If the total charge was not properly calculated then the post-translationally modified peptides fell off the linear plot. Using this method five arginine residues (residues 5, 49, 54, 97 and 130) were found to be partially citrullinated, four glutamine residues (residues 8, 103, 121 and 147) were found to be partially deamidated and both methionines at residues 21 and 167 were found to be partially oxidized. Three peptides were found with phosphorylation; TPPPSQGK (residue 98 to 105), FSWGAEGQR (residue 114 to 122), and SGSPMAR (residue 163 to 169) and Arginine at 107 was found to be partially monomethylated or dimethylated. The method may provide an excellent means of identifying the presence of peptides with post-translational modifications in conjunction with MS.  相似文献   

14.
The two leading RP-HPLC approaches for deriving hydrophobicity values of amino acids utilize either sets of designed synthetic peptides or extended random datasets often extracted from proteomics experiments. We find that the best examples of these two methods provide virtually identical results--with exception of Lys, Arg, and His. The intrinsic hydrophobicity values of the remaining residues as determined by Kovacs et al. (Biopolymers 84 (2006) 283) correlates with an R(2)-value of 0.995+ against amino acid retention coefficients from our Sequence Specific Retention Calculator model (Anal. Chem. 78 (2006) 7785). This novel finding lays the foundation for establishing consensus amino acids hydrophobicity scales as determined by RP-HPLC. Simultaneously, we find the assignment of hydrophobicity values for charged residues (Lys, Arg and His at pH 2) is ambiguous; their retention contribution is strongly affected by the overall peptide hydrophobicity. The unique behavior of the basic residues is related to the dualistic character of the RP peptide retention mechanism, where both hydrophobic and ion-pairing interactions are involved. We envision the introduction of "sliding" hydrophobicity scales for charged residues as a new element in peptide retention prediction models. We also show that when using a simple additive retention prediction model, the "correct" coefficient value optimization (0.98+ correlation against values determined by synthetic peptide approach) requires a training set of at least 100 randomly selected peptides.  相似文献   

15.
This investigation describes the separation of tryptic peptides by capillary reversed-phase high-performance liquid chromatography (RP-HPLC) with eluents in the intermediate pH range, followed by in-line electrospray ionisation tandem mass spectrometry (ESI-MS/MS) analysis. For these purposes, gradient elution procedures with an aqueous eluent containing 20 mM ammonium formate, and an increasing content of acetonitrile or methanol, were employed. Compared to the analysis of the same tryptic peptides under low-pH conditions with an ion-pairing reagent, the increase in the pH with the 20 mM ammonium formate mobile phase led to significant changes in both peptide retention to the reversed-phase column and the collision-induced dissociation at the MS/MS stage as a consequence of the changes in the physico-chemical properties of these peptides, such as their overall charge, polarity and relative hydrophobicity. Thus, improved selectivity for the peptide separation and favourable tandem mass spectrometry analysis could be obtained with eluents in this intermediate pH range. The number of tryptic peptides identified by the new approach for the proteins investigated were significantly higher than that obtained by the conventional low-pH methods. Moreover, analysis of protein digests at very low concentrations was also performed under both acidic and intermediate pH conditions and similar improvements in selectivity and MS/MS detection limits were observed, i.e. identification of more distinct peptides and higher sequence coverage of the protein was obtained when eluents of intermediate pH were employed. This study therefore highlights the potential of conducting peptide mapping in the intermediate pH range to achieve more reliable and sensitive protein identifications with capillary RP-HPLC–ESI-MS/MS.  相似文献   

16.
To explore and understand the significance of individual metallothionein isoforms, the methods of their identification are needed. Separation of these isoforms requires a high resolution technique which can exploit very small differences in mass, charge, and hydrophobicity. In this report, three different techniques of CE were analyzed and used for metallothionein separation: detection using capillary gel electrophoresis, capillary zone electrophoresis, and capillary isoelectric focusing. Also, three different metallothionein samples were used from horse kidney, rabbit liver, and human liver. We identified metallothionein isoforms based on the determination of their relative molecular masses, on the charge differences in different pH buffers, and based on the pI value. Methods used in this report allow metallothionein identification, permit to quantify the purity and content of its isoforms, and allow studying its polymerization. This report supports and endorses the increased application of CE methodology in proteomics.  相似文献   

17.
Trifluoroacetic acid (TFA) remains the dominant mobile phase additive for reversed-phase high-performance liquid chromatography (RP-HPLC) of peptides after more than two decades since its introduction to this field. Generally, TFA has been employed in a concentration range of 0.05-0.1% (6.5-13 mM) for the majority of peptide separations. In order to revisit the question as to whether such a concentration range is optimum for separations of peptide mixtures containing peptides of varying net positive charge, the present study examined the effect of varying TFA concentration on RP-HPLC at 25 and 70 degrees C of three groups of synthetic 10-residue synthetic peptides containing either one (+1) or multiple (+3, +5) positively charged groups. The results show that the traditional range of TFA concentrations employed for peptide studies is not optimum for many, perhaps the majority, of peptide applications. For efficient resolution of peptide mixtures, particularly those containing peptides with multiple positive charges, our results show that 0.2-0.25% TFA in the mobile phase will achieve optimum resolution. In addition, the use of high temperature as a complement to such TFA concentration levels is also effective in maximizing peptide resolution.  相似文献   

18.
The usefulness of a noncovalent capillary coating consisting of two layers of oppositely charged polymers for the separation of peptides with capillary electrophoresis (CE) was studied. Capillaries were coated simply by subsequently flushing with solutions of 1% m/v Polybrene and 1% v/v poly(vinylsulfonate) (PVS) forming a bilayer, which showed to produce a strong and highly reproducible electroosmotic flow (EOF) at low pH. Using this coating in combination with a background electrolyte (BGE) containing sodium phosphate (pH 2.5) and 0.01% v/v PVS, initially broadened and overlapping peaks were obtained for some test peptides. By omitting the PVS from the BGE, the peak width and shape of the peptides improved resulting in baseline separation. A systematic study of the influence of the BGE composition showed that considerable further enhancement of the separation efficiency was achieved by increasing the ionic strength of the BGE. Using a BGE of 200 mM tris(hydroxymethyl)aminomethane (Tris)-phosphate (pH 2.5) plate numbers for the peptides were in the 300 000-600 000 range and the relative standard deviation of the peptide migration times was less then 0.3% (n = 5). The use of Tris-phosphate instead of sodium phosphate allowed the current to stay within acceptable limits when 30 kV was used as separation voltage. Overall, the bilayer coating showed a remarkable EOF repeatability, as well as long-term stability. Compared to bare fused-silica capillaries the intraday and interday repeatability of migration times was very favorable and coated capillaries could be used for over a month performing analyses with low and high ionic strength BGEs without any performance deterioration. The usefulness of the bilayer-coated capillaries for the analysis of positively charged peptides was demonstrated by the fast and efficient separation of various closely related enkephalins and the baseline separation of an isomeric peptide/peptoid couple exhibiting efficiencies of over 550 000 plates.  相似文献   

19.
The direct coupling of capillary electrophoresis (CE) and mass spectrometry, combined with ionspray ionization using a coaxial capillary arrangement, is described. The CE/mass spectrometer interface is shown to be effective for the analysis of native and tryptic peptides and of proteins of high molecular weight such as bovine serum apotransferrin (approximately 78 kDa). Adsorption of cationic analytes under acidic buffer conditions is minimized through the use of a non-covalent coated capillary possessing an overall positive charge. Since the direction of the electroosmotic flow is thus reversed, compared to that in conventional CE separation on uncoated capillaries, migration of cations is achieved by applying a negative voltage (typically -30 kV) at the injector end of the capillary. In addition to the inherent advantage of providing pre-formed cationic species for mass spectral detection, this arrangement permits analysis of proteins of high isoelectric points even at low pH. The ability to conduct electrophoresis of globular proteins under acidic conditions also provides a means of monitoring their conformational changes, as reflected both by the variation of migration times and by concurrent changes in the multiply charged ion envelopes.  相似文献   

20.
The separation of two different sets of synthetic peptides has been investigated by high-performance capillary zone electrophoresis utilising naked, fused silica capillaries. The effects of electrolyte pH, buffer concentration, capillary length and electric field strength on the separation efficiency and selectivity were systematically varied, with the highest resolution achieved with buffer electrolytes of low pH and relatively high ionic strength. Under optimised separation conditions utilising the "short end injection" separation approach with negative electric field polarity, a series of eight structurally-related synthetic peptides were baseline resolved within 4 min without addition of any modifier of the background electrolyte with separation efficiencies in the vicinity of 600000 theoretical plates/m. Further significant enhancement of separation efficiencies could be achieved by taking advantage of the "long end injection" approach with positive electric field polarity. The outcome of these experimental variations parallels the "sweeping" effect that has been observed in the capillary electrochromatographic and micellar electrokinetic separations of polar molecules and permits rapid resolution of peptides with focusing effects. In addition, small changes in the electrolyte buffer pH and concentration were found to have a significant impact on the selectivity of synthetic peptides of similar intrinsic charge. These observations indicate that multi-modal separation mechanisms operated under these conditions with the unmodified fused silica capillaries. This study, moreover, documents additional examples of peptide-specific multi-zoning behaviour in the high-performance capillary zone electrophoretic separation of synthetic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号